Puzzle Creek Mitigation Project

Year 5 Monitoring Report Rutherford County, North Carolina

<u>Prepared for:</u> NCDEQ – Division of Mitigation Services <u>DMS Project Manager</u>: Paul Wiesner <u>DMS Contract Number</u>: D06027-C <u>DMS Project Number</u>: 92522 <u>Project Construction</u>: April 2010 <u>Year 5 Data Collection</u>: October 2015 <u>Report Submitted</u>: November 2015

<u>Report Prepared By:</u> Michael Baker Engineering, Inc. 797 Haywood Road, Suite 201 Asheville, NC 28806 NC Engineering License F-1084

<u>Monitoring Firm:</u> Michael Baker Engineering, Inc. (Baker) <u>Monitoring Firm POC:</u> Micky Clemmons

Table of Contents

EXECU	UTIVE SUMMARY	1
1.0	PROJECT BACKGROUND AND ATTRIBUTES	2
1.1	LOCATION AND SETTING	2
1.2	MITIGATION STRUCTURE AND OBJECTIVES	4
1.3	PROJECT HISTORY AND BACKGROUND	6
1.4	MONITORING PLAN VIEW	9
2.0	PROJECT CONDITION AND MONITORING RESULTS	15
2.1	VEGETATION ASSESSMENT	
2.	1.1 Vegetation	
2.	1.2 Soil Data	
2.	1.3 Vegetative Problem Areas	
2.	1.4 Stem Counts	
2.2	STREAM ASSESSMENT	
2.2	2.1 Morphologic Parameters and Channel Stability	
2.2	2.2 Hydrology	
2.2	2.3 Photographic Documentation of Site	
2.2	2.4 Stream Stability Assessment	
2.3	AREAS OF CONCERN	
3.0	REFERENCES	21

Tables and Figures

Figure	1	Project Location Map
Table	1	Project Mitigation Structure and Objectives
Table	2	Project Activity and Reporting History
Table	3	Project Contacts
Table	4	Project Background
Figure	2	Restoration Approach by Project Reach
Table	5	Riparian Buffer Planting List
Table	6	Preliminary Soil Data
Table	7&7b	Stem Count Arranged by Plot
Table	8	Vegetative Problem Areas
Table	9	Hydrological (Bankfull) Verifications
Table		
Table	10	Stream Problem Areas
Table	10 11	Stream Problem Areas Categorical Stream Feature Visual Stability Assessment
Table	11	Categorical Stream Feature Visual Stability Assessment

Appendices

Exhibit	Vegetation Survey Data Tables	A
Exhibit	Vegetation Monitoring Plot Photos	A
Exhibit	Qualitative Visual Stability Assessment Tables	В
Exhibit	Cross-section Plots with Annual Overlays	В
Exhibit	Longitudinal Profiles with Annual Overlays	В
Exhibit	Stream Reach Morphology and Hydraulic Data	В
Exhibit	Cross-section Morphology and Hydraulic Data	В
Exhibit	Riffle Pebble Count Size Class Distribution (UT1)	В
Exhibit	Stream Reference Station Photologs	В
Exhibit Exhibit Exhibit	Stream Reach Morphology and Hydraulic Data Cross-section Morphology and Hydraulic Data Riffle Pebble Count Size Class Distribution (UT1).	H H H

EXECUTIVE SUMMARY

The Puzzle Creek site was restored through a full delivery contract with the NCDEQ – Division of Mitigation Services (DMS). This report documents Year 5 monitoring data for the five-year monitoring period. The goals for the restoration project are as follows:

- Improve hydrologic connectivity between creeks and floodplains;
- Reduce sediment and nutrient loading through restoration of riparian areas and stream banks;
- Create geomorphically stable conditions on the Puzzle Creek project site; and
- Improve aquatic and terrestrial habitat along the project corridor.

To accomplish these goals, the following objectives were implemented:

- Removal of anthropogenic impacts from the stream corridor and rehabilitation of incised and eroding streams by stabilizing stream channels and improving floodplain access;
- Improving impacted buffers to aid in nutrient removal from runoff and stabilizing stream banks to reduce bank erosion and sediment contribution to streams;
- Providing more stable and diverse channel features such as riffles, creating deeper pools and areas of water re-aeration, and providing woody debris to increase instream habitat quality and diversity;
- Establishment of riparian areas characterized by native vegetation, organic debris, and flooding which are protected by a permanent conservation easement. The establishment of native streambank and floodplain vegetation will improve bank stability, provide shade to decrease water temperature and improve terrestrial wildlife habitat.

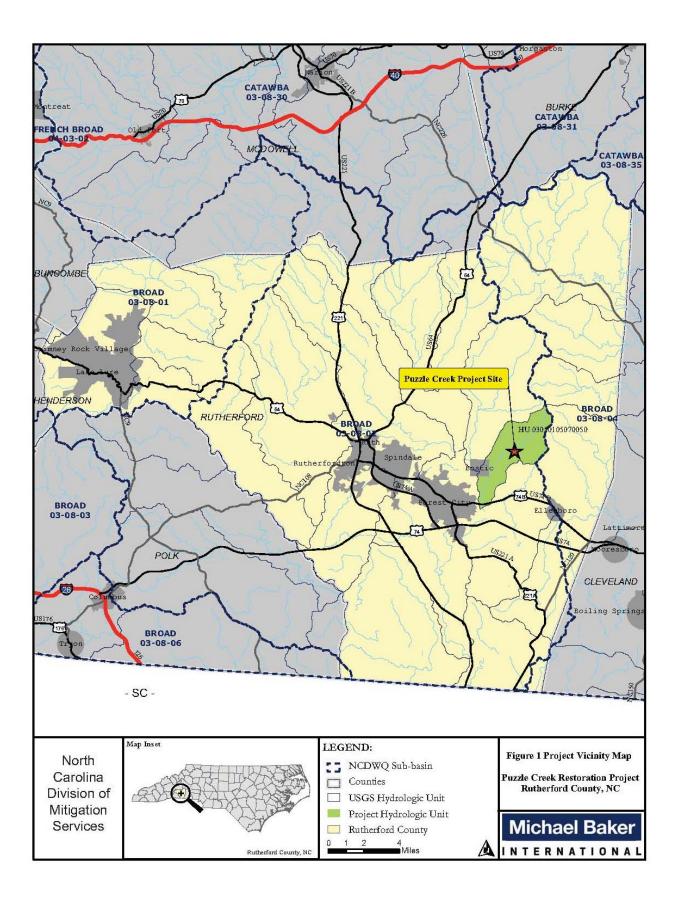
Eight vegetation monitoring plots 100 square meters (m^2) (10m x 10m) in size were used to estimate survival of the woody vegetation planted on-site. The Year 5 vegetation monitoring indicated an average survival of 556 planted stems per acre and 1,700 volunteer stems per acre. When planted and volunteer stems are combined, the site has an average density of 2,256 woody stems per acre. This data shows that the site has exceeded the final success criteria of 260 trees per acre at the end of Year 5 monitoring.

The design implemented at the Puzzle Creek mitigation site involved Priority Level I and II Restoration, and Enhancement Level I approaches. The resulting design will ultimately yield stable E-type channels for Puzzle Creek, and the project tributaries. Restoration and enhancement work were completed in accordance with the approved design approach provided in the mitigation plan for Puzzle Creek and its tributaries. Longitudinal profile and cross-section data indicate that the project streams have remained stable since baseline monitoring data were collected in February 2011. Additionally, as the photo logs included in this report show, the herbaceous cover at the project site is flourishing and is promoting bank stability, while planted woody vegetation grows and volunteer vegetation becomes more widespread. There is one area of concern noted in this Year 5 monitoring period. This area of concern is a bare bank area on Reach 1 of Puzzle Creek immediately downstream of the Piney Mountain Church Road Bridge were erosion from station 0+15 to 0+30 has persisted from earlier years. This area is associated with a utility crossing under the stream that was not stabilized well after utility work. This area continues to be monitored and additional vegetation has been added. Other areas of concern noted on past reports have continued to be monitored. Based on our observations of these previously noted areas, they have stabilized and have vegetation growing on the previously eroding surface and trees growing on the bank. It is not anticipated that these areas will require further maintenance. Based on data presented in Appendix B, this Site has meet the hydrologic and stream success criteria specified in the Puzzle Creek Mitigation Plan.

Summary information and data related to the occurrence of items such as beaver activity or easement encroachment, and statistics related to performance of various project and monitoring elements, can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly Restoration Plan) documents, which are available on the DMS's website. All raw data supporting the tables and figures in the appendices, is available from DMS upon request.

1.0 PROJECT BACKGROUND AND ATTRIBUTES

The Puzzle Creek Restoration site is located approximately three miles northeast of Bostic, in Rutherford County, North Carolina (Figure 1). The project site is situated in the Broad River Basin, within North Carolina Division of Water Quality (NCDWQ) sub-basin 03-08-02 and United States Geologic Survey (USGS) hydrologic unit 03050105070050. The Puzzle Creek project area drains agricultural and forested land, as well as a small area occupied by residential development. The general area in which the project is located is rural in character, and is not likely to change significantly in the foreseeable future. The largest percentage of land use in the watershed currently is in forested cover for wildlife habitat and hunting as well as timber production. The percentage of land in the watershed available to agriculture is 27% with over 60% of the watershed remaining as forest land.


Orthophotography maps from the 1930's show residential and agricultural land use altering the Puzzle Creek watershed. Many streams were channelized to help mark property boundaries and to drain low lands for farming. Anthropogenic land use alteration and channelization of streams introduced instabilities to the streams. Incision, bank erosion, meander cutoffs, lateral bar formation, debris jams, and other stream processes typical of adjusting streams were found in the project reach. Segments of the unnamed tributary had achieved a degree of relative stability due to the presence of heavily forested banks, development of floodplains, and bedrock that has prevented further channel incision.

The project involved restoration or enhancement of four on-site streams: Puzzle Creek and three smaller unnamed tributaries (UT) identified in the project as UT1, UT2 and UT3. As noted in the Baseline Monitoring Report for Puzzle Creek, unnamed tributaries (UT2 and UT3) were added as short restored reaches as we recognized that work would be required on them within the easement area to facilitate connecting them to the mainstem. Total stream length across the project increased from approximately 4,849 LF to 5,073LF. The restoration and enhancement of 5,073 LF of stream within this project site has generated 4,966 stream mitigation units (SMUs).

1.1 Location and Setting

The Puzzle Creek restoration site is located approximately three miles northeast of Bostic in Rutherford County, NC (Figure 1). To access the site from Interstate 26, take the Hwy 74 East exit, Exit 67, toward NC-108/Columbus/Rutherford. Continue on Hwy 74 East for approximately 23 miles to Exit 182, turning left onto S. Broadway Street. Continue on S. Broadway Street to the stop light and take a right onto E. Main Street. Continue on E. Main for 1.43 miles and turn left on Bostic Sunshine Highway. Continue on Bostic Sunshine Road until reaching Piney Mountain Church Road (SR 1007). Take a hard right turn and continue 1.27 miles to 2321 Piney Mountain Church Road.

Unnamed tributary 1 (UT 1) flows west then northwest from the east side of the Schafer property boundary to a break in the easement at the Shafer home. UT1 continues northwest from the break in the easement to its confluence with Puzzle Creek. Reach 1 of Puzzle Creek begins at Piney Mountain Church Rd (SR 1007) and continues southwest to the confluence with UT1. Reach 2 of Puzzle Creek begins at the confluence with UT1 and continues northwest to the property boundary.

1.2 Mitigation Structure and Objectives

Table 1 summarizes project data for each reach and restoration approaches used. The design implemented at the Puzzle Creek mitigation project site involved both Priority Level 1 and 2 approaches. The resulting design should ultimately yield primarily a E-type channel for Puzzle Creek and its tributaries within the project reach. Restoration and enhancement work on Puzzle Creek and UT1were completed in accordance with the approved design approach provided in the mitigation plan for Puzzle Creek.

Table 1. Pro Puzzle Creek						22					
Project Segment or Reach ID	Existing Feet/ Acres	Mitigation Type	Approach	Target Stream Type	Footage or Acreage	Mitigation Ratio	Mitigation Units	Stationir	ıg	Comment	
Puzzle Creek			-	i		i	1	i			
Reach 1	1,024LF	R	P1	C4/5	1,000 LF	1:1	1,000	0+00-10+	00	Reroute channel middle of valley, pattern, dimensio profile	improve n and
Reach 2	600 LF	R	PII		634 LF	1:1	634	10+00-16-	⊦34	Pattern adjustmen overly sinuous se profile and dimen adjustments	ction,
UT1 (Reach 1)						1	1			
Subreach ^A	2,036 LF	R	PII		2,150 LF	1:1	2,150	00+00-21-	⊦50	Pattern and profi adjustments; imp floodplain bench Profile and dimen	rove
Subreach ^A	320 LF	Е	LI	C4/5	320LF	1.5:1	213	21+50-24-	⊾70	adjustments; imp floodplain access valley through th precluded pattern adjustments)	rove (narrow is reach
Subreach ^A	469 LF	R	PII		469 LF	1:1	469	24+70-29-		Pattern and profil adjustments; imp floodplain bench	rove
Subreach ^A	400LF	R	PII	C4/5	409 LF	1:1	400	32+12-36-		Slight pattern and adjustments, low bankfull elevation bank near conflue	l profile ering of 1 on right
UT 2				1							1
Reach 1		R	PII	-	52 LF	1:1	52	1+39-1+9	91	Bank grading and stabilization; inva removal and re-p native riparian ve	asives lanting with
UT 3										Bank grading and	1
Reach 1		R	PI	-	48 LF	1:1	48	0+63-1+2	11	stabilization; inva removal and re-p native riparian ve	asives lanting with
Mitigation U						1					
Stream (LF)	Total SI		R	· (A	/	(Ac)			Г	Total Wetland (Ac)	Buffer (Ac)
5,073	4,966			N			NA			NA	• 1 1
Notes: A Sub-	-reaches are	listed	as they	occur,	going in a d	ownstre	am direct	tion as indica	ated l	by the stationing	provided.

Prior to the mitigation project, riparian areas along Puzzle Creek were utilized for pasture and were frequently mowed. Today much of the site is wooded, with acreage being managed for timber production and as timberland used for hunting and quite enjoyment. The primary causes of impairment found within the project reaches included previous efforts to channelize the streams, logging activities, an abundance of unstable log jams resulting in erosion, and the presence of non-native vegetation.

The upper reach (reach 1) of the mainstem of Puzzle Creek had severe lateral instability resulting in debris jams from falling trees. Bank erosion, falling trees, incision, and confinement by the valley wall were considered significant and continuing issues present on the reach. A combination of Priority I and Priority II Restoration approaches were implemented along Reach 1 based on the need to excavate the floodplain in some areas while in other areas a new channel would be excavated that utilized the existing floodplain. As was the case with all project reaches, non-forested sections of floodplain as well as areas of recently disturbed floodplain were seeded and replanted with trees and shrubs native to the area to provide stability and create an adequate riparian buffer.

The reach of Puzzle Creek downstream of the confluence with UT1 (Reach 2) was suffering from a cycle of debris jams, lateral instability, bank erosion, channel avulsion, and falling trees. This section of Puzzle Creek was incised, although some flood relief was available by the presence of a remnant channel in the left floodplain. A combination of Priority I and Priority II Restoration was applied in Reach 2 to create a meandering pattern with stable riffles and pools. This approach resulted in the channel being moved away from the right valley wall. This provided marked improvements in the profile, cross-section, and stability of the channel pattern.

Throughout UT1, a combination of Priority I and II Restoration approaches was implemented. Reach 1 of UT1 flows west then northwest from the upstream end of the Schafer property boundary to a break in the easement above a waterfall at the Schafer home. The primary issues addressed on UT1 were connectivity of the stream to the floodplain, localized erosion of streambanks and confinement by valley walls, sub-reaches with bed features that are inconsistent with the plan form of the stream, and non-native vegetation. At the uppermost end of the reach, floodplain connectivity was addressed by changing the bed profile, thereby raising the water surface. By creating backwater in meander bends, naturally-sustainable pools were created. Further downstream, a new channel was constructed to bring the stream away from the valley wall and to create more natural riffle-pool sequences. Below this offline section, banks were graded to improve stream stability and create the needed cross-sectional area while following the existing channel course. A riprap stream crossing was installed in this reach for land-owner and forest fire response access to both sides of the creek. Below the crossing, intact banks and bed diversity minimized the meandering needed and restoration consisted of making minor changes to the channel cross-section, pattern and profile as necessary to improve bank stability and sediment transport.

In other less stable sections where the stream exhibited signs of channelization, the channel was taken offline to restore dimension, pattern, and profile, creating a more stable channel with a more diverse channel bedform. A significant amount of bedrock is present throughout Reach 1. Consequently, the channel was brought back online where bedrock is present.

In other areas, where bedform was diverse, banks were stable, and valley constraints were present, modifications to the profile and cross-section were made, but the channel was kept in its existing alignment. For these reasons, an Enhancement Level I approach was taken in those sections of Reach 1.

In accordance with the approved mitigation plan for the site, construction activities began in September 2008. Toward the end of construction in October 2008 and shortly thereafter, the project site experienced a series of flood events. Post flooding conditions indicated that designed conditions in some areas needed to be reevaluated, particularly as they related to bank height and sinuosity. Baker evaluated the site to determine the appropriate course of action needed to stabilize the project area. It was determined that damage sustained on Puzzle Creek warranted re-mobilizing a construction crew to the site to repair

damage to the site and to make adjustments to the channel alignment. Minor areas of erosion were stabilized and vegetated geolifts were added. Just upstream of the confluence with UT1 one meander was removed to increase the meander length in this area. The last meander on Puzzle was determined to be excessively tight, so the radius was increased slightly by bringing the meander bend in slightly and a cross-vane was constructed at the head of the riffle to center the thalweg and hold elevation through the upstream pool.

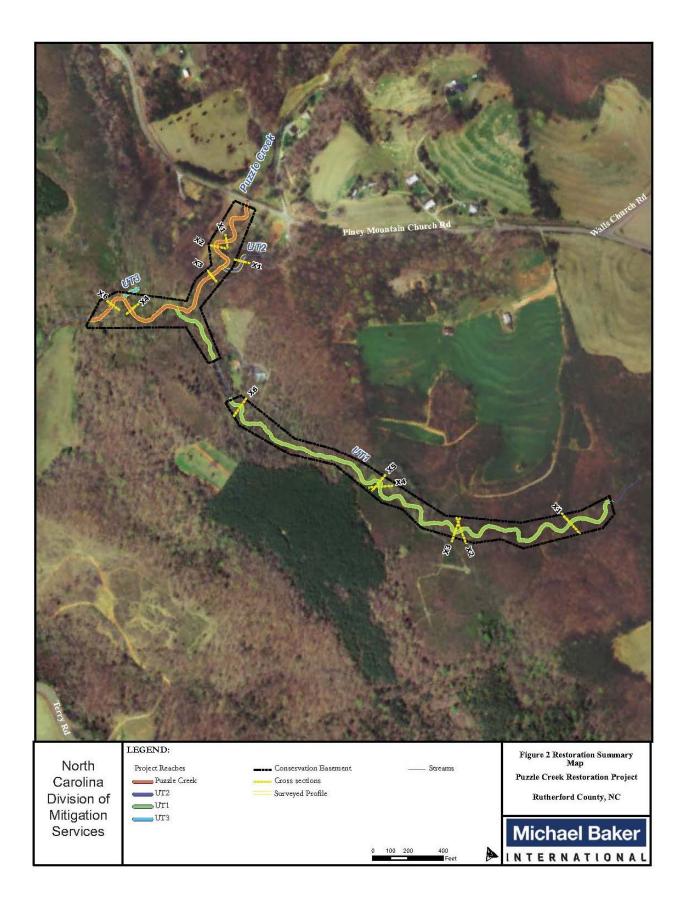
During late fall and winter, a number of subsequent flood events impacted UT1, which had been completed by that time. In early 2009, Baker staff visited the site to assess channel and bank stability. Although there were no areas suffering from excessive erosion, there were some indications that the channel, as constructed, was not functioning to the level desired. Initially it appeared that meanders were attempting to elongate downstream and improper pattern was suspected; however, after some time passed and additional high flows passed through the channel it was determined that primarily the pattern of instability was due to the banks not being established at the proper elevation and the floodplain needing to be lower over a wider area. Channel pattern continued to be a concern and channel length was reduced by increasing meander length and reducing meander radius of curvature. In early 2010, the channel was modified by lowering the banks in some areas and lowering the floodplain elevation to accommodate out of bank flows. Alignment modifications were also made. The repaired site has been observed for over 5 years and has been stabilized by the channel modifications. Further observation has not resulted in any additional design concerns.

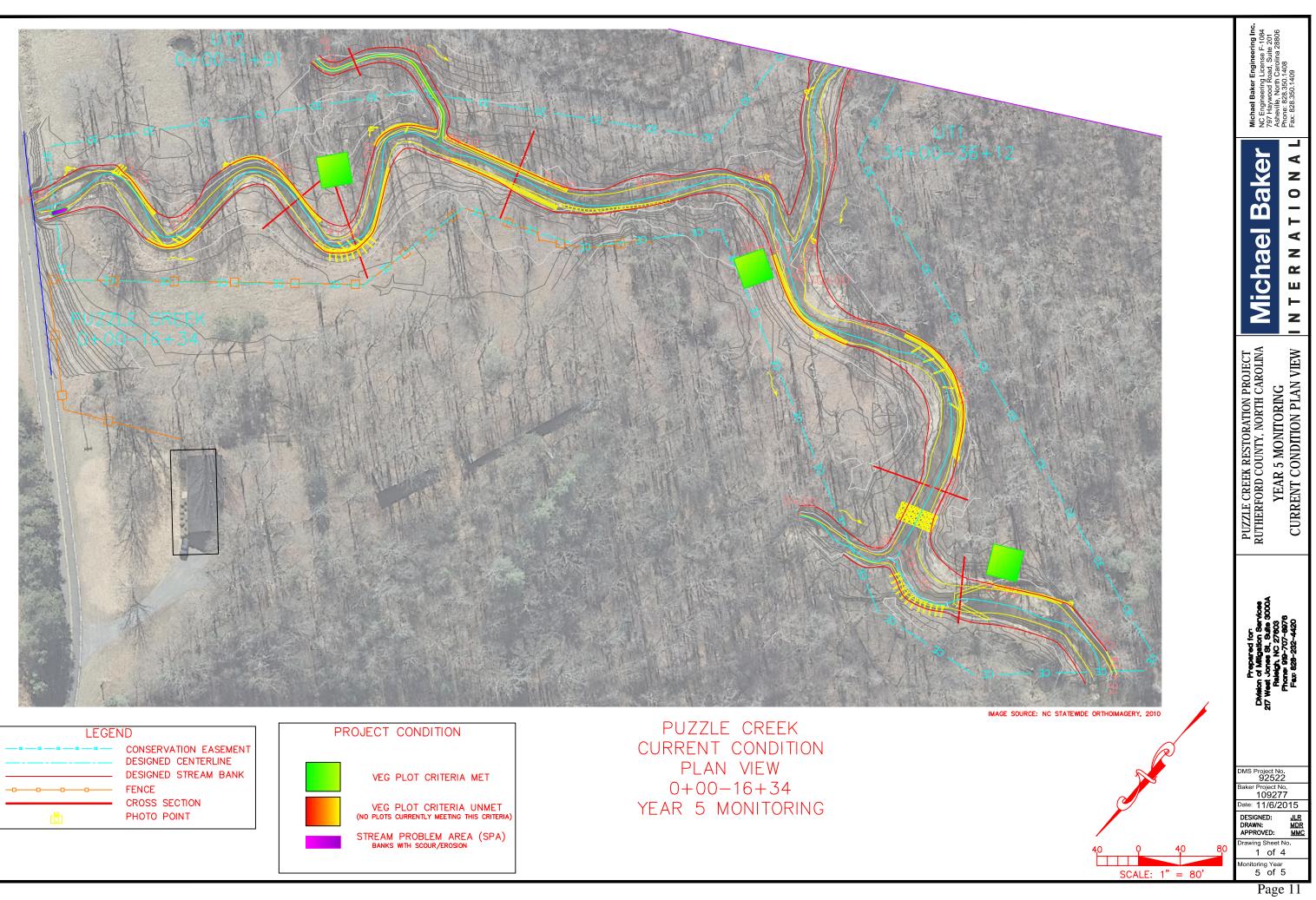
Plan modifications during construction involved the location and selection of instream structures and bank stabilization practices as well as the lowering of the bankfull elevation in isolated reaches along Puzzle Creek and UT1. Meander length and radius of curvature was also increased along two reaches of UT1. Another modification made included applying Priority I and II measures on two additional tributaries to Puzzle Creek that are located within the project area. Unnamed Tributary 2 (UT2) is located above the confluence of Puzzle Creek and UT1. The third unnamed tributary to Puzzle Creek, UT3, is located just upstream of the only cross-vane on Puzzle Creek and downstream of the confluence with UT1. These tributaries are included in the total Restoration footage due to the need to reconstruct the confluences of these streams as the mainstem was modified. Invasive vegetation removal and replanting of these areas with native riparian vegetation were carried out along these tributaries. The total linear feet of UT2 and UT3 where Restoration measures were applied is 52 LF and 48 LF, respectively. Restoration measures applied to UT2 and UT3 actually extend beyond the conservation easement boundary, but footage beyond the easement was not considered in calculating the mitigation credit provided by this site. These changes are documented in the as-built drawings. The final as-built stream length for the project as indicated in Table 1 is 5,073 LF.

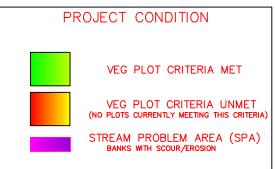
1.3 Project History and Background

The chronology of the Puzzle Creek mitigation project is presented in Table 2 while the contact information for designers, contractors and plant material suppliers is presented in Table 3. Relevant project background information is presented in Table 4. Total stream length across the project increased from approximately 4,849 LF to 5,073LF.

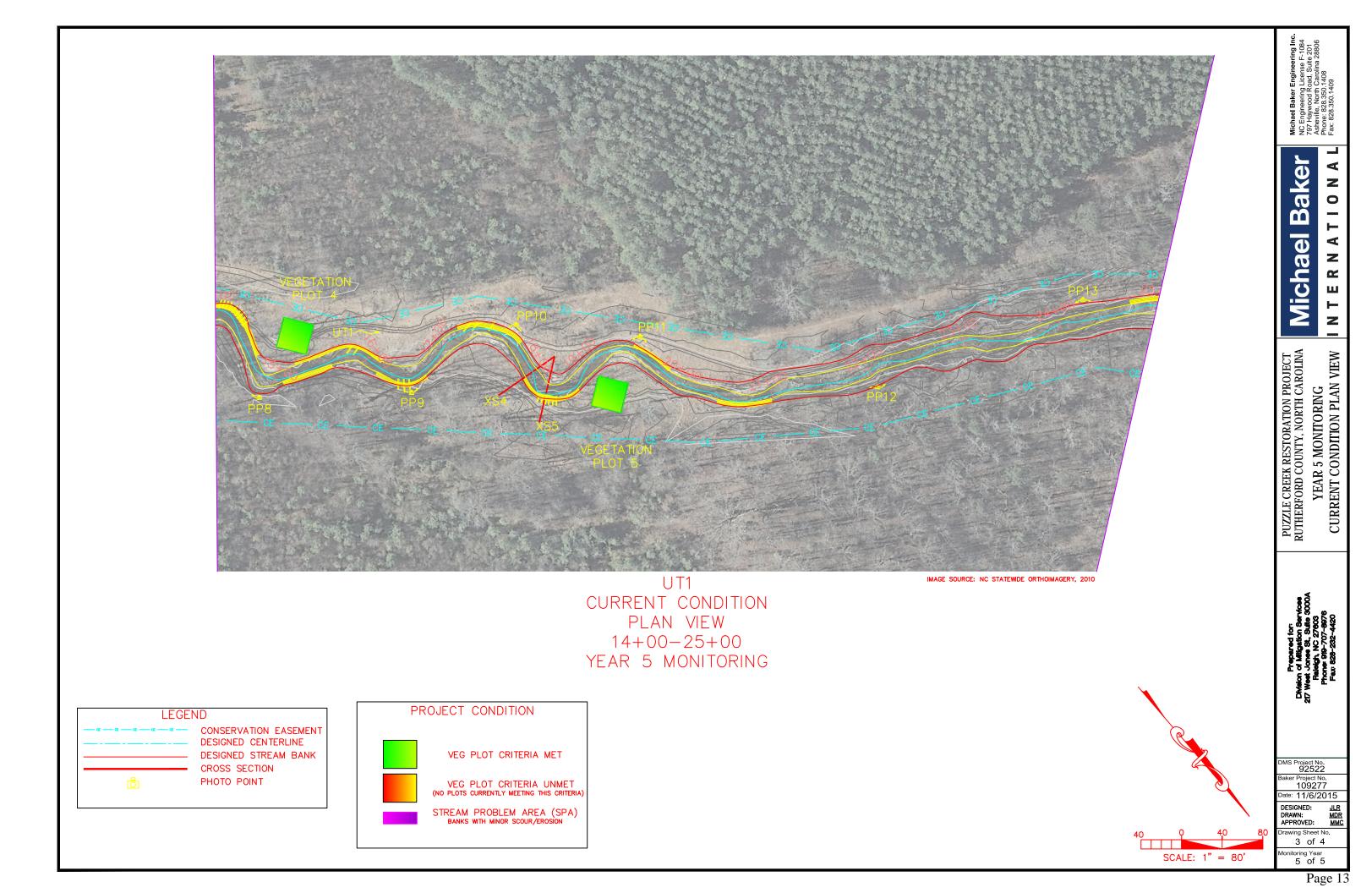
Table 2. Project Activity and Reporting History Puzzla Creak Mitigation Project NCDMS Project#0252	2	
Puzzle Creek Mitigation Project-NCDMS Project#9252 Activity or Report	Data Collection	Completion or Delivery
Restoration Plan	October 2007	December 2007
Final Design-90%	October 2007	December 2007
Construction	-	October 2008
Temporary S&E mix applied to entire project area	-	October 2008
Permanent seed mix applied to project site	-	October 2008
Containerized and B&B plantings set out	-	October 2008
Flood Events; Site Repairs	-	October-November 2008
Site Evaluation on UT1	January 2009	-
Site Modifications and Repairs	April 2010	-
Mitigation Plan / As-built (Year 0 Monitoring – baseline)	July 2010	January 2011
Year 1 Monitoring	November 2011; January-February 2012	May 2012
Year 2 Monitoring	October 2012, March 2013	June 2013
Year 3 Monitoring	October 2013, March 2014	June 2014
Year 4 Monitoring	March 2015	April 2015
Year 5 Monitoring	October 2015	November 2015

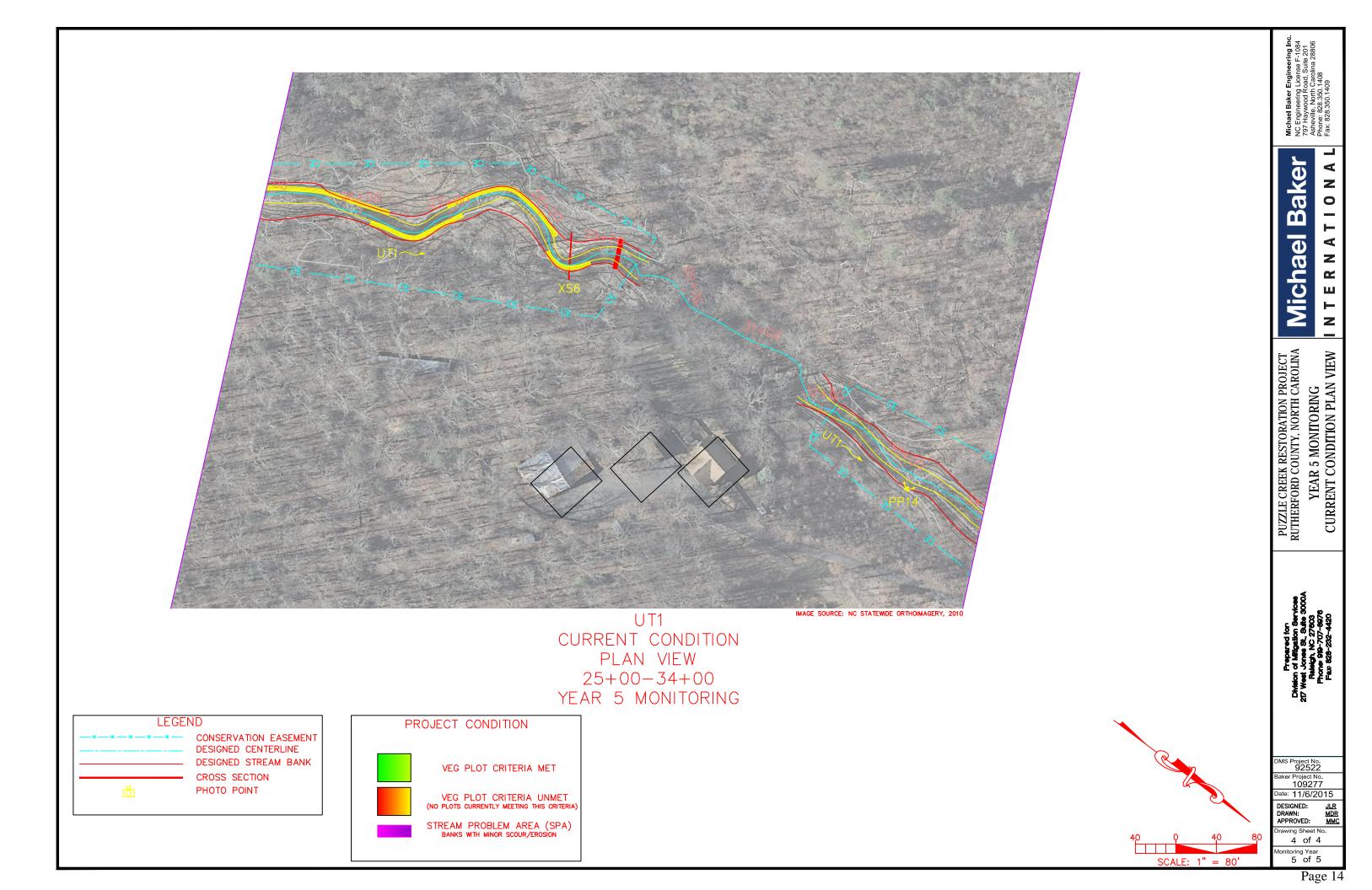

Table 3. Project Contacts Table Puzzle Creek Mitigation Project-N	NCDMS Project#92522
Designer	
Michael Baker Engineering, Inc.	797 Haywood Rd Suite 201, Asheville, NC 28806 Contact: Micky Clemmons, Tel. 828-412-6100
Construction Contractor	
River Works, Inc.	8000 Regency Parkway, Suite 200, Cary, NC 27511 Contact: Bill Wright, Tel. 919.818.6686
Planting & Seeding Contractor	-
River Works, Inc.	8000 Regency Parkway, Suite 200, Cary, NC 27511 <u>Contact:</u> George Morris, Tel. 919.459.9001
Seed Mix Sources	Green Resources
Nursery Stock Suppliers	Arborgen and Hillis Nursery
Monitoring	
Michael Baker Engineering, Inc.	797 Haywood Rd Suite 201, Asheville, NC 28806 Contact: Micky Clemmons, Tel. 828-412-6100


Puzzle Creek Mitigation Project-NCDMS Project#92522 Project County	Rutherford County, NC
Physiograhic Region	Piedmont Province. Borders Blue Ridge Escarpment
Ecoregion	Southern Inner Piedmont
Project River Basin	Broad
USGS HUC for Project	03050105070050
NCDWQ Sub-basin for Project	03-08-02
Within extent of DMS Watershed Plan?	No
WRC Class	Cool
% of Project Easement Fenced or Demarcated	100%
Beaver Activity Observed During Design Phase?	No
Drainage Area (Square Miles or Acres)	
Puzzle Creek Reach 1	2.58 mi ²
Puzzle Creek Reach 2	4.18 mi ²
UT1Reach 1	1.6 mi ²
UT1 Reach2	1.6 mi ²
UT2	<.5 mi ²
Stream Order	Puzzle-3rd Order, UT1-2 nd Order, UT2-1 st Order
Restored Length	
Puzzle Creek Reach 1	1,000 LF
Puzzle Creek Reach 2	634 LF
UT1Reach 1	3,339 LF
UT 2	52 LF
UT 3	48 LF
Perennial or Intermittent	Perennial (all project streams)
Watershed Type	Rural (Predominantly Forested)
Watershed LULC Distribution (Percent area)	
Forest	61%
Shrub	12%
Pasture	27%
Water	.45%
Drainage Impervious Cover Estimate (%)	<5%
NCDWQ AU/Index #	9-41-19
303d Listed	No
Upstream of 303d Listed Segment	No
Reasons for 303d Listing or Stressor	-
Total Acreage of Easement	11.64 Acres
Total Vegetated Acreage w/in Easement	n/a (Easement vegetated with exception of stream channel and access path)
Total Planted Acreage within the Easement	~10 Acres
Rosgen Classification (Pre-existing)	
Puzzle Creek Reach 1	C4


Table 4. Project Attribute TablePuzzle Creek Mitigation Project-NCDMS Project#92522				
Puzzle Creek Reach 2	E4			
UT1Reach 1	B4c/C4			
UT1 Reach2	B4c			
Rosgen Classification of As-built				
Puzzle Creek Reach 1	E4			
Puzzle Creek Reach 2	E4			
UT1Reach 1	E4/C4			
UT1 Reach2	E4			
Valley Type	VIII			
Valley Slope	.001 to .0106			
Valley Side Slope Range	n/a			
Valley Toe Slope Range	n/a			
Trout Waters Designation	No			
Species of Concern	No			
Dominant Soil Series and Characteristics	Chewacla/ Pa	acolet/Pacol	et-Bethlehem	L
	Depth (in.)	% Clay	K Factor	T Factor
Puzzle Creek Reach 1	61"	22.5	.32	5
Puzzle Creek Reach 2	61"	22.5	.32	5
UT1Reach 1	61"	22.5	.32	5
UT1 Reach2	62"	27.5	.2	3

1.4 Monitoring Plan View


The five-year monitoring plan for the Puzzle Creek Mitigation Site includes criteria to evaluate the success of the geomorphic and vegetative components of the project. A current condition plan view (CCPV) depicting the monitoring features for the Puzzle Creek Mitigation Project is provided below. The plan view provides a layout of channel pattern as well as the location of structures designed to aid in dimension and profile stability. Other features shown on the plan view include the location of crest gauges, vegetation monitoring plots, cross-sections, reference photo stations, and the location of maintenance and repair work completed. The plan view also provides call outs at the location of problem areas. With the exception of intermittent areas of kudzu encroachment and Chinese privet or multiflora rose plants scattered within the project easement on Puzzle Creek and UT1, there are no specific vegetation problem areas. These areas with invasive species were treated in September 2015. The only Stream Problem Area (SPS), which is shown on the CCPV, is an area on the right bank just below the Piney Creek Church Road Bridge where vegetation has not become established. This has been noted on past CCPV maps. This area has been re-seeded and additional livestakes have been planted but have yet to become established. This small area of streambank is the only area of concern on the project. Signs of beaver on UT1 have been noted but they have not built a significant dam or affected trees significantly. We have asked the Department of Agriculture Animal and Plant Health Inspection Service (APHIS) program to trap at this site and they will be removing beaver this winter. Baker will continue to monitor the presence of invasives within the easement and treat them again in the spring. Figure 2 illustrates the project as it is delineated by reach.



2.0 PROJECT CONDITION AND MONITORING RESULTS

The five-year monitoring plan for the Puzzle Creek mitigation project includes criteria to evaluate the success of the vegetation and stream components of the project. The specific locations of vegetation plots, permanent cross-sections, reference photo stations and crest gauges are shown on the CCPV submitted with this report.

2.1 Vegetation Assessment

2.1.1 Vegetation

Successful restoration of the vegetation on a site is dependent upon hydrologic restoration, active planting of preferred canopy species, and volunteer regeneration of the native plant community. In order to determine if the criteria are achieved, eight vegetation monitoring quadrants were installed across the restoration site. The size of individual quadrants varies from 100 square meters for tree species to 1 square meter for herbaceous vegetation. In the past, Level 1 CVS vegetation monitoring was conducted (Lee et. al. 2007). For monitoring year's 4 and 5, Level 2 CVS vegetation monitoring was conducted to access volunteer species as well as planted stems. Sampling normally occurs in the fall prior to leaf fall. Vegetation monitoring evaluated species composition, density, and survival. Individual seedlings were marked to ensure that they can be found in succeeding monitoring years.

Photographs are used to visually document vegetation success in sample plots. Reference photos of tree and herbaceous conditions within plots are taken at least once per year. Photos of the plots are included in Appendix A of this report.

The interim measure of vegetative success for the site is the survival of at least 320, 3-year old, planted trees per acre at the end of Year 3 of the monitoring period. The final vegetative success criteria is the survival of 260, 5-year old, planted trees per acre at the end of Year 5 of the monitoring period.

Planted live stakes and bare root trees are flourishing and will increasingly contribute to streambank stability. Bare-root trees were planted throughout the conservation easement. A minimum 30-foot buffer was established along all restored stream reaches. In general, bare-root vegetation was planted at a target density of 680 stems per acre, in an 8-foot by 8-foot grid pattern. Planting of bare-root trees was completed in the winter of 2009-2010, with some supplemental planting in repaired areas during spring of 2010. Additional supplemental planting of red cedar trees was done to delineate the easement line in the Shaffer field next to Piney Branch Church Road in the winter of 2015. Woody species planted during 2009 and 2010 at this site are listed below in Table 5.

	n Project-NCDMS Project #92		
	take Species Planted in 2010		
Common Name	Scientific Name	% Planted by Species	# of Stems
	Riparian Buffer		
	Trees Over	story	
Sycamore	Platanus occidentalis	7%	200
Willow Oak	Quercus phellos	14%	400
River birch	Betula nigra	7%	200
Persimmon	Diospyros virginiana	9%	250
Tulip Poplar	Liriodendron tulipifera	7%	200
Green Ash	Fraxinus pennsylvanica	7%	200
Swamp Chestnut Oak	Quercus michauxii	7%	200
White Oak	Quercus alba	7%	200
	Understory Tree	es/Shrubs	
Pawpaw	Asimina triloba	7%	200
Redbud	Cercis canadensis	7%	200
Flowering Dogwood	Cornus floridus	11%	300
Hazel alder	Alnus serrulata	7%	200
Shagbark Hickory	Carya ovata	2%	50
	Riparian Livestak	e Plantings	
Ninebark	Physocarpus opulifolius	10%	
Elderberry	Sambucus canadensis	20%	
Silky Willow	Salix sericea	30%	
Silky Dogwood	Cornus amomum	40%	

2.1.2 Soil Data

Table 6. Preliminary Soil DataPuzzle Creek Mitigation Project-NCDMS	Project #92522	2			
Dominant Soil Series and Characteristics	Chewacla/ Pa	acolet/Paco	let-Bethleher	n	
	Depth (in.)	% Clay	K Factor	T Factor	%OM
Puzzle Creek Reach 1	61"	22.5	.32	5	.75-2.5
Puzzle Creek Reach 2	61"	22.5	.32	5	.75-2.5
UT1Reach 1	61"	22.5	.32	5	2-2.5
UT1 Reach2	62"	27.5	.2	3	2-2.5

2.1.3 Vegetative Problem Areas

There are no major vegetation problem areas at this time. However, Chinese privet (*Ligustrum sinense*) and, to a lesser extent, Multiflora rose are scattered intermittently on-site. Kudzu, is encroaching upon the easement on the lower end of Reach 2 of Puzzle Creek as well as at the upstream end of UT1 (Table 8, Appendix A). Baker treated invasive species within the entire easement area during September 2015 and continues to use a public herbicide applicator to treat areas where invasive vegetation is present. The site will be treated again in spring 2016.

2.1.4 Stem Counts

The mitigation plan for the Puzzle Creek Site specifies that the number of quadrants required will be based on the species/area curve method, as described in NCDMS monitoring guidance documents. The size of individual quadrants is 100 square meters for woody tree species, and 1 square meter for herbaceous vegetation. Eight vegetation plots, each 10 by 10 meters or, when constrained, 5 by 20 meters in size, were established across the restored site.

2.1.4.1 Results

Tables 7 and 7b in Appendix A presents information on the stem counts for each of the vegetation monitoring plots. Data from Year 5 vegetation monitoring shows a range of 283 - 769 planted stems per acre, with approximately 89% of the stems being in good to excellent condition. Nearly 14% of the stems planted are missing or have died; however, a number of volunteers, primarily river birch, sweet gum, Tulip poplar, pine, and sycamore have begun populating the project area. Over the last two years, the number of volunteers per plot were estimated and a Level 2 analysis in the CVS entry tool was used to provide an estimate of volunteer stems per acre. This data indicates that the range of estimated volunteer stems per plot was 0 to 103 and this indicates a range from just a few to as many as 4,168 (average = 1,700) volunteer stems per acre. The average density of planted stems, based on data collected from the eight monitoring plots during Year 5 monitoring, is 556 stems per acre. This indicates that the Site has met the interim minimum success criteria of 320 trees per acre by the end of Year 3 and has met the final success criteria of 260 trees per acre by the end of Year 5. The locations of the vegetation plots are shown on the CCPV.

Only one discrete woody or herbaceous vegetation problem areas were identified during Year 5 monitoring. This is a small area on the right bank just below the Piney Mountain Church Road Bridge as discussed above. This problem area accounts for less than 1% of the stream bank length on the mainstem of Puzzle Creek. Although the density of herbaceous cover varies across the site, conditions observed on-site during the Year 5 monitoring survey found ground cover in the easement area to be sufficient for providing site stabilization. Survival rates of planted woody stems in the vegetation plots indicate that plantings across the easement area are of sufficient density to meet regulatory requirements, as well as the site stabilization and habitat enhancement goals established in the mitigation plan.

2.2 Stream Assessment

2.2.1 Morphologic Parameters and Channel Stability

Geomorphic monitoring of restored stream reaches is being conducted over a five year period to evaluate the effectiveness of the restoration practices installed. Monitored stream parameters include channel dimension (cross-sections), profile (longitudinal survey), pattern, bed composition, bank stability, bankfull flows, and stability of reference sites documented by photographs (USACE 2003). Crest gauges, as well as wrack lines, were used to document the occurrence of bankfull or greater flood events. The methods used and any related success criteria are described below for each parameter. For monitoring this site, twelve permanent cross-sections and two crest gauges were installed. Longitudinal profiles were also completed on Puzzle Creek and UT1. Detailed channel morphology was surveyed with a total station, so survey data is georeferenced. Stream survey data was collected to a minimum of Class C Vertical and Class A Horizontal accuracy using Leica TS06 Total Station and was georeferenced to the NAD83 State Plane Coordinate System, FIPS3200 in US Survey Feet, which was derived from the As-built survey.

2.2.1.1 Dimension

Twelve permanent cross-sections are installed to help evaluate the success of the mitigation project. Permanent cross-sections are established throughout the project site as follows: five cross-sections are located on Puzzle Creek, and six cross-sections are located on UT1. One cross-section is also located on UT2 to monitor restoration efforts associated with riparian improvements, at the confluence of UT2 and Puzzle Creek. Data was not collected from UT2 during the Year 4 monitoring period, but was collected during the Year 5 monitoring survey. Cross-section is marked on both banks with permanent pins to establish the exact transect used. A common benchmark is used for cross-section surveys include points measured at all breaks in slope, including top of bank, bankfull, edge of water, and thalweg, if the features are present. Riffle cross-sections are classified using the Rosgen Stream Classification System.

There should be little change in the as-built cross-sections. If changes do take place, they will be evaluated to determine if they represent movement toward a more unstable condition (e.g., down-cutting or erosion) or movement toward increased stability (e.g., settling, vegetative changes, or deposition along the banks).

2.2.1.1.1 Results

As-built cross-section monitoring data for stream stability was collected in January and February 2011. The twelve permanent cross-sections along the restored channels were resurveyed in October 2015 to document stream dimension for Monitoring Year 5. Crosssectional data is presented in Table 13 (Appendix B) and the locations of cross-sections are shown on the plan sheets submitted with this report.

The cross-sections show that there has been little adjustment in stream dimension across the project reaches since construction. The small adjustments that have occurred indicate temporary responses to high flows, a response to the increasing riparian vegetation and a general movement towards a more stable channel. Based on field observations, deposition and minor narrowing can be attributed to herbaceous vegetation that has become well established. Deposition of sediment onto the floodplain has been noted throughout the monitoring period. This shows that the floodplain along the stream reaches are appropriately acting as a sediment sink, allowing greater than bankfull flows to deposit their sediment loads on the floodplain instead of creating aggradational features within the channel that could lead to instability. Cross-sectional measurements do not indicate any streambank or channel stability issues.

2.2.1.2 Pattern and Longitudinal Profile

Longitudinal profiles for Year 5 were also surveyed during October 2015. Profiles of the various project reaches are provided in Appendix B. A longitudinal profile was conducted for the entire project length on Puzzle Creek (1600 LF) and 3,000 LF of UT1. During monitoring years 1-3, the entire length of UT2 was surveyed but the profile was not surveyed in years 4 or 5 because most of this length is outside of the easement. Longitudinal profiles of Puzzle Creek and UT1 have been replicated annually during the five-year monitoring period.

Measurements were taken at the thalweg, water surface, and the low top of bank during surveys of longitudinal profiles. Data should indicate that pools are remaining relatively deep with flat water surface slopes, and the riffles remain steeper and shallower than the pools. Bed form observations should be consistent with those observed for channels of the design stream type.

Profile data collected reflect stable channel bedform and a diverse range of riffle and pool complexes.

All measurements were taken at the head of each feature (e.g., riffle, pool) and at the maximum pool depth. Elevations of grade control structures were also included in the longitudinal profiles surveyed. Surveys were tied to a permanent benchmark. Puzzle Creek and its tributaries are E-type streams primarily characterized by riffle-pool sequences.

2.2.1.2.1 Results

The longitudinal profiles show that the bed features are stable. As noted in the Stream Reach Morphology Data Tables in Appendix B (Table 14), riffle and pool characteristics do not appear to have changed significantly since construction; the measurements obtained for Year 5 are acceptable when compared to reference reach and design data provided for the project reaches. There was also little change in the profile of UT1 to Puzzle Creek. No areas of instability were noted during Year 5 monitoring.

2.2.1.3 Substrate and Sediment Transport

Bed material analysis consists of a pebble count taken in the same constructed riffle during annual geomorphic surveys of the project site. This sample, combined with evidence provided by changes in cross-sectional and profile data will reveal changes in sediment gradation that occur over time as the stream adjusts to upstream sediment loads. Significant changes in sediment gradation will be evaluated with respect to stream stability and watershed changes.

2.2.1.3.1 Results

For this project, a pebble count was collected on UT1. Visual observations and a review of pebble count data collected during Year 5 monitoring showed that sediment is being transported appropriately through the project reach. No significant areas of aggradation or degradation within the project area were observed. The pebble count data (Appendix B) indicates that the stream is moving fines through the system, and there is a marked trend towards larger bed material making up a greater percentage of the bed substrate. The annual pebble counts show that there has been a shift toward larger stone sizes during the last two years of sampling. The Year 5 data show a marked change in bed composition when compared to the first three years after restoration was completed and indicate significant sorting and transport of fines out of the sampled riffle. This data quantifies general observations of larger bed particles in riffles throughout the site.

2.2.2 Hydrology

2.2.2.1 Streams

The occurrence of bankfull events within the monitoring period have been documented by the use of crest gauges and photographs. Crest gauges were installed on the floodplain at bankfull elevation. One crest gauge was set up near Vegetation Plot #3 on UT1 while another gauge was set up downstream of the first two cross-sections on Reach 1 of Puzzle Creek. The crest gauges record the highest watermark between site visits and are checked at each site visit to determine if a bankfull event has occurred. Photographs are used to document the occurrence of wrack lines and sediment deposition on the floodplain during monitoring site visits.

Two bankfull flow events must be documented on each crest gauge within the 5-year monitoring period. The two bankfull events must occur in separate years; otherwise, the stream monitoring will continue until two bankfull events have been documented in separate years.

2.2.2.1.1 Results

Between October 29, 2012 and the conclusion of Year 5 monitoring in October 2015, the site was found to have had bankfull events each year, based on crest gauge readings obtained on UT1 and Puzzle Creek and observed wrack lines. Crest gauges and physical observations indicate Puzzle Creek and UT1 have both had high flows since the last observation, both gauges indicate that flows have exceeded bankfull. Based on our documented observations, Puzzle Creek has had at least 6 bankfull events and UT1 has had 5 bankfull flows since construction. Information on these events is provided in Table 9 of Appendix B.

2.2.3 Photographic Documentation of Site

Photographs are used to document restoration success visually. Reference stations were photographed during the as-built survey. Photographs will be repeated at these stations each year for the five years following construction. Reference photos are taken once a year, from a height of approximately five to six feet. Permanent markers will ensure that the same locations (and view directions) are utilized during each monitoring period. Selected site photographs are shown in Appendix B.

2.2.3.1 Lateral Reference Photos

Reference photo transects were taken of the right and left banks at each permanent crosssection. A survey tape was captured in most photographs which represents the cross-section line located perpendicular to the channel flow. The water line was located in the lower edge of the frame in order to document bank and riparian conditions. Photographers made an effort to consistently maintain the same area in each photo over time.

2.2.3.2 Structure Photos

Photographs of primary grade control structures (i.e. vanes and weirs), along the restored streams are included within the photographs taken at reference photo stations. Photographers made every effort to consistently maintain the same area in each photo over time.

Lateral and structure photographs are used to evaluate channel aggradation or degradation, bank erosion, success of riparian vegetation, structure function and stability, and effectiveness of erosion control measures. Lateral photos should not indicate excessive erosion or degradation of the banks. A series of photos over time should indicate successive maturation of riparian vegetation and consistent structure function. Photo documentation of the site during Year 5 monitoring reflects stable site conditions in restored or enhanced areas as well as healthy stands of herbaceous and woody vegetation in the riparian corridors.

2.2.4 Stream Stability Assessment

In-stream structures installed within the restored streams included cover logs, rootwads, rock vanes, log vanes, and boulder toe protection. The Year 5 visual observations of these structures throughout the project site indicate that little or no changes have occurred since the baseline survey was performed. Structures are functioning as designed and are holding their elevation and grade.

The Categorical Stream Feature Visual Stability Assessment and Visual Morphological Stability Assessment tables in Appendix B (Tables 10 through 12), summarize the condition of project structures and bank conditions.

Quantitative reference reach and design data used to determine the restoration approach, as built data, as well as Year 5 monitoring data are summarized in Tables 13 and 14 of Appendix B.

2.3 Areas of Concern

At this time, there is only one area of concern. A small area on the right streambank of Puzzle Creek Reach 1 immediately downstream of the Piney Mountain Church Road Bridge is unstable from station 0+15 to 0+30. This area is associated with a utility crossing under the stream that was not stabilized after utility work. The area has been seeded and some livestakes applied but it continues to be unstable. This area will continue to be monitored. Additional vegetation will be planted in the spring of 2016. Areas of concern that have been discussed in past reports have all become stable and no longer cause concern.

Maintenance of the site for invasive vegetation control has continued in 2015. A public herbicide applicator was used for invasive vegetation treatment and another site visit to spray invasive vegetation has be scheduled for the spring of 2016.

There is some limited evidence of beaver activity on UT1 but none was observed on the mainstem during monitoring year 5. One small beaver dam was removed on UT1 during the monitoring survey. Beaver removal along UT1 has been scheduled for January 2016 when USDA-APHIS will be available to remove beavers at this site.

Mowing encroachment was noted during Year 3. No additional mowing has been noted during Year 4 or Year 5 site visits. During February 2015, eastern red cedar trees were planted along the easement line in the field on the Shafer property. The easement has been well marked and this has helped landowners avoid encroachment in easement area.

3.0 REFERENCES

- Lee, M., Peet R., Roberts, S., Wentworth, T. CVS-NCEEP Protocol for Recording Vegetation, Version 4.1, 2007.
- United States Army Corps of Engineers. 2003. Stream Mitigation Guidelines, April 2003, U.S. Army Corps of Engineers. Wilmington District.

APPENDIX A

- 1. STEM COUNT ARRANGED BY PLOT (TABLES 7 AND 7B)
- 2. VEGETATION PROBLEM AREAS (TABLE 8)
- **3.** VEGETATION PLOT PHOTOLOG

Table 7. Stem Count Arran Puzzle Creek Mitigation Sit																		
0	110jeet #32522			Current Data (Yr 5 2015)							AB (2010)	MY (2011)	MY2 (2012)	MY3 (2013)	MY4 (2014)	MY5 (2015)		
Tree Species	Common Name	Туре	Plot 1	Plot 2			. (Plot 6	Plot 7	Plot 8	Totals	Totals	Totals	Totals	Totals	Totals	Survival %	Probable Cause
Betula nigra	River Birch	Tree			2	4			5	2	2	5	5	4	14	9	700%	
Carpinus caroliniana	American hornbeam	Tree							1						1	1		
Diospyros virginiana	American Persimmon	Tree	1	1	2	1	2	1	1	3	19	19	19	16	13	12	63%	
Fraxinus pennsylvanica	Green Ash	Tree		4	4		2		1		17	14	14	13	12	11	65%	
Liriodendron tulipfera	Tulip Poplar	Tree		5	3	3				1	11	11	11	10	11	12	110%	
Platanus occidentalis	American Sycamore	Tree	1	1	1	9	1	3	5	4	27	25	25	25	25	25	93%	
Prunus serrulata	Black Cherry	Tree									5	4	4	3	1	0	0%	
Quercus sp.	Oak	Tree				1									1	1		
Quercus michauxii	Swamp Chestnut Oak	Tree	1					1	1	3	10	8	8	7	6	6	60%	
Quercus phellos	Willow Oak	Tree	5				1	3		1	18	13	13	11	10	10	56%	
Quercus rubra	Northern Red Oak	Tree	2	2				2	1	1	5	8	8	8	8	8	160%	
Salix nigra	Black Willow	Tree									3	2	2	2	1	0	0%	
Understory Species																		
Alnus serrulata	Tag Alder	Tree	2			1	1	3	2		12	10	10	10	9	9	75%	
Asimina triloba	Pawpaw	Tree									2	1	1	1	0		0%	misidentified
Cercis canadensis	Redbud	Tree									2	2	2	2	0		0%	misidentified
																		Damaged during over-
Cornus florida	Flowering Dogwood	Tree			1					2	7	3	3	3	3	3	43%	bkf storm event
Volunteers						-	r	1	r	-								
Acer rubrum	Red Maple	Tree											1	1				
Alnus serrulata	Tag Alder	Tree											2		1			
Betula nigra	River Birch	Tree	28	16			8	17	25	16	87+	87+	133+	80+	232	116		# estimated
Carpinus caroliniana	American hornbeam	Tree							11							11		# estimated
Ilex opaca	American holly	Tree													1	0		
Juniperus virginiana	eastern redcedar	Tree						7							1	7		# estimated
Liquidambar styraciflua	Sweet Gum	Tree	20	20				17	14	14		17	77	63+	95	85		# estimated
Liriodendron tulipfera	Tulip Poplar	Tree	18	19					15	6	1+	3	10	15	61	64		# estimated
Pinus spp.	Pine	Tree	18	10			6	7					1	8	43	41		# estimated
Platanus occidentalis	American Sycamore	Tree	20					21			25+	56	16	26+	67	62		# estimated
Quercus rubra	Northern Red Oak	Tree									45+	45+	1					
	Plot area	(acres)						0.0247		0.0247							Averages	
	Species		10	8	6	6	7	10	10	9							8	
	Planted Sten	ns/Plot	12	13	13	19	7	13	17	17							14	
		ns/Plot	116	78	13	19	21	82	82	53							58	
	Planted Stems Pe	er Acre	485.6	526.1	526.1	768.9	283.3	526.1	688.0	688.0							562	

Table 7b. Stem Count A Puzzle Creek Mitigation	•																																					
		Current Plot Data (MY5 2015) Annual Means E92522-01-0001 E92522-01-0003 E92522-01-0004 E92522-01-0005 E92522-01-0006 E92522-01-0007 E92522-01-0008 MY5 (2015) MY4 (2015) MY3 (2013) MY2 (2012)																																				
		Species	E925	22-01-0	0001	E925	22-01-0	0002	E9252	22-01-0	003	E92522-01-	0004	E92522-01	-0005	E92	522-01-	0006	E92	522-01-0	007	E925	522-01-0	0008	M	Y5 (201	5)	М	Y4 (201	L5)	N	1Y3 (201	.3)	IV	/IY2 (2012	2)	MY1 (2	2011)
Scientific Name	Common Name	Туре	Р	V	Т	Р	V	Т	Р	v	Т	ΡV	Т	P V	Т	Р	v	Т	Р	v	Т	Р	V	Т	Р	V	Т	Р	V	Т	Р	v	Т	Р	v	т	P \	VТ
Alnus serrulata	hazel alder	Tree	2		2							1	1	1	1	3		3	2		2				9		9	9	1	10	7		7	10		10	10	10
Asimina triloba	pawpaw	Tree																													1		1	1		1	1	1
Betula nigra	river birch	Tree		28	28		16	16	2		2	4	4	8	8		17	17	5	20	25	1	15	16	12	104	116	13	281	294	4		4	5		5	5	5
Carpinus caroliniana	American hornbeam	Tree																	1	10	11				1	10	11	1		1						i T		
Cercis canadensis	eastern redbud	Tree																													2		2	2		2	2	2
Cornus florida	flowering dogwood	Tree							1		1											2		2	3		3	3		3	3		3	3		3	3	3
Diospyros virginiana	common persimmon	Tree	1		1	1	1	1	2		2	1	1	2	2	1		1	1		1	3		3	12		12	13		13	15		15	19		19	19	19
Fraxinus pennsylvanica	green ash	Tree				4	4	4	4		4			2	2				1		1				11		11	12		12	13		13	14		14	14	14
lex opaca	American holly	Tree																												1						i T		
luniperus virginiana	eastern redcedar	Tree															7	7								7	7			1						i T		
Liquidambar styraciflua	sweetgum	Tree		20	20		20	20									17	17		14	14		14	14		85	85			95						i T		
Liriodendron tulipifera	tuliptree	Tree		18	18	5	14	19	3		3	3	3							15	15	1	5	6	12	52	64	11	61	72	10		10	11		11	11	11
Pinus sp.	Pine	Tree		18	18		10	10						6	6		7	7								41	41			43						i T		
Platanus occidentalis	American sycamore	Tree	1	19	20	1		1	1		1	9	9	1	1	3	18	21	5		5	4		4	25	37	62	25	67	92	22		22	25		25	25	25
Prunus serotina	black cherry	Tree																										1		1	3		3	4		4	4	4
Quercus sp.	Oak	Tree										1	1												1		1	1		1						i T		
Quercus michauxii	swamp chestnut oak	Tree	1		1											1		1	1		1	3		3	6		6	6		6	5		5	8		8	8	8
Quercus phellos	willow oak	Tree	5		5									1	1	3		3				1		1	10		10	10		10	7		7	13		13	13	13
Quercus rubra	northern red oak	Tree	2		2	2		2								2		2	1		1	1		1	8		8	8		8	6		6	8		8	8	8
Salix nigra	black willow	Tree																											1	1		2	2		2	2		2 2
		Stem count	12	103	115	13	65	73	13		13	19	19	7 14	21	13	66	79	17	59	76	16	34	50	110	336	446	113	411	664	98	2	100	123	2	125	123 2	2 12
size (ares)			1			1			1		1		1			1			1			1			8			8			8			8		8		
	siz	e (ACRES)		0.02			0.02			0.02		0.02		0.02			0.02			0.02			0.02			0.20			0.20			0.20			0.20		0.2	0
	SI	pecies count	6	5	10	5	6	8	6		6	6	6	5 2	7	6	5	10	8	4	10	8	3	9	12	7	15	13	5	18	13	1	14	13	1	14	13 1	1 14
	Stems	s per ACRE	486	4168	4654	526	2630	2954	526		526	769	769	283 567	850	526	2671	3197	688	2388	3076	647	1376	2023	556	1700	2256	572	2079	3359	496	10	506	622	10	632	622 1	632
P = Planted				This co	olor indi	cates the	at the nu	umber i	ncludes vo	oluntee	r stems																											

P = Planted V = Volunteer

T = Total

This color indicates that the number includes volunteer stems.

Indicates that the stems per Acre exceeds requirements by 10% Indicates that the stems per Acre exceeds requirements, but by less than 10%

Table 8. Vegetation Prol Puzzle Creek Mitigation P			
	Puzzle Creek Re	ach 1 (1,000 LF)	
Feature Issue	Station No./Range	Suspected Cause	Photo Number
Other	N/A	N/A	N/A
Bare Bank	0+15-0+30	Utility crossing	1
Bare Bench	N/A	N/A	N/A
Bare Flood Plain	N/A	N/A	N/A
Invasive/Exotic Populations	Minor amount intermittently scattered on banks.	Multiflora rose, kudzu, privet - source outside easement and persisting after treatment.	N/A
	Puzzle Creek R	each 2 (634 LF)	
Feature Issue	Station No.	Suspected Cause	Photo Number
Other	N/A	N/A	N/A
Bare Bank	N/A	N/A	N/A
Bare Bench	N/A	N/A	N/A
Bare Flood Plain	N/A	N/A	N/A
Invasive/Exotic Populations	Minor amount intermittently scattered on banks.	Multiflora rose, privet, kudzu-source outside easement near Veg Plot 8, privet -source outside easement and persisting after treatment.	N/A
	UT1 (3,3	339 LF)	
Feature Issue	Station No.	Suspected Cause	Photo Number
Other	N/A	N/A	N/A
Bare Bank	N/A	N/A	N/A
Bare Bench	N/A	N/A	N/A
Bare Flood Plain	N/A	N/A	N/A
Invasive/Exotic Populations	Minor amount intermittently scattered on banks.	Multiflora rose, privet, kudzu-source outside easement near Veg Plot 8, privet -source outside easement and persisting after treatment.	N/A

Photo 1. Area of bare bank at utility crossing at top of project on mainstem.

Photo 3. Bank is near confluence with UT1. View is downstream, to area listed two years ago as unstable. It is now stabilized with many trees along the top of the bank and vegetation growing on the floodplain.

Photo 2. Area at Station 16+00 called a Vegetation Problem Area in past but has been stable over the last two years even though a small area of bare bank remains.

Photo 4. Upstream view of bend shown in Photo 3. No No recent instability noted.

Puzzle Creek Mitigation Project Photo Log - Vegetation Plot Photo Points

Notes:

- 1. Photo point locations are shown on the plan view, at the approximate location where the pictures was taken. Location may vary slightly from past reports to minimize obstructions.
- 2. All photos were taken on October 8, 2015.

Photo 2: Veg Plot 1: Herbaceous Plot

Photo 1: Veg Plot 1

Photo 3: Veg Plot 2

Photo 4: Veg Plot 2: Herbaceous Plot

Photo 5: Veg Plot 3

Photo 6: Veg Plot 3: Herbaceous Plot

Puzzle Creek Mitigation Project Photo Log - Vegetation Plot Photo Points

Notes:

- 1. Photo point locations are shown on the plan view, at the approximate location where the pictures was taken. Location may vary slightly from past reports to minimize obstructions.
- 2. All photos were taken on October 8, 2015.

Photo 7: Veg Plot 4

Photo 8: Veg Plot 4: Herbaceous Plot

Photo 9: Veg Plot 5

Photo 10: Veg Plot 5: Herbaceous Plot

Photo 11: Veg Plot 6

Photo 12: Veg Plot 6: Herbaceous Plot

Puzzle Creek Mitigation Project Photo Log - Vegetation Plot Photo Points

Notes:

- 1. Photo point locations are shown on the plan view, at the approximate location where the pictures was taken. Location may vary slightly from past reports to minimize obstructions.
- 2. All photos were taken on October 8, 2015.

Photo 14: Veg Plot 7: Herbaceous Plot

Photo 15: Veg Plot 8

Photo 16: Veg Plot 8: Herbaceous Plot

APPENDIX B

- 1. HYDROLOGICAL (BANKFULL) VERIFICATIONS (TABLE 9)
- 2. STREAM PROBLEM AREAS (TABLE 10)
- **3. CROSS-SECTION PLOTS WITH ANNUAL OVERLAYS**
- 4. LONGITUDINAL PROFILES WITH ANNUAL OVERLAYS
- 5. CATEGORICAL STREAM FEATURE VISUAL STABILITY ASSESSMENT (TABLE 11)
- 6. VISUAL MORPHOLOGICAL STABILITY ASSESSMENT (TABLE 12)
- 7. STREAM REACH MORPHOLOGY AND HYDRAULIC DATA (TABLE 13)
- 8. CROSS-SECTION MORPHOLOGY AND HYDRAULIC DATA (TABLE 14)
- 9. RIFFLE PEBBLE COUNT SIZE CLASS DISTRIBUTIONS
- **10. STREAM REFERENCE STATION PHOTO LOGS**

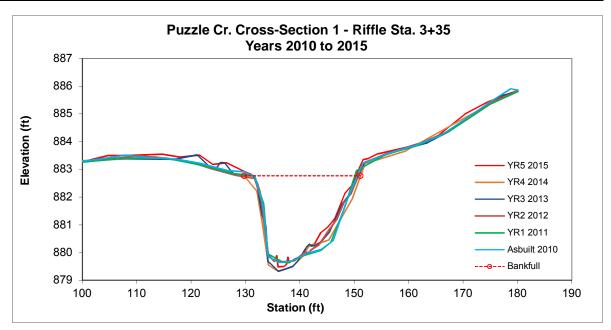
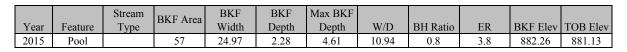
Table 9. Verification ofPuzzle Creek Mitigation I	Bankfull or Greater than Bankfull F Project, No. 92522	Events		
			Gauge Waterm (inches above	
			Puzzle Cr.	UT1
Date of Data Collection	Date of Event	Method of Data Collection	Reach 1	
2/3/2012	Between January 2011 and 2/2/12	Gauge measurement	2.52"	2.28"
10/29/2012	Between 2/2/12 and 10/29/12	Gauge measurement	2.75", 1.75"	2.25"
3/31/2014	Between 10/29/12 and 3/31/14	Gauge measurement	1.50"	2.50"
3/25/2015	Between 3/31/14 and 3/25/15	Gauge measurement	48"	5.88"
10/15/2015	Between 3/25/15 and 10/15/15	Gauge measurement	9"	4.25"

Photo 1. Crest gauge staff showing cork deposition in red circle, at 4.25 inches above the bottom of the staff, which is at the bankfull elevation.

Photo 1. Crest gauge staff showing cork deposition in red circle at approximately 9 inches above bottom of staff, which is at bankfull, as measured against the 8.5 inch wide paper.

ble 10. Stream Problem zzle Creek Mitigation Proj											
Puzzle Creek Reach 1 (1,000 LF)											
Feature Issue	Station No.	Suspected Cause	Number								
Bank Erosion	0+15-0+30	Shear stress caused by high velocity flow against bank after utility work left banks vulnerable and they continue to be unstable inspite of adding livestakes.	Photo #1 under Table 8								
	Puzzle Creek R	Reach 2 (634 LF)									
Feature Issue	Station No.	Suspected Cause	Photo Number								
N/A	N/A	N/A	N/A								
	UT1 (3	,339 LF)									
Photo											
Feature Issue	Station No.	Suspected Cause	Number								
N/A	N/A	N/A	N/A								

		Stream	BKF Area	BKF	BKF	Max BKF					
Year	Feature	Туре		Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
2015	Riffle	Е	48.7	17.41	2.8	3.64	6.23	1.1	3.9	880.33	880.57

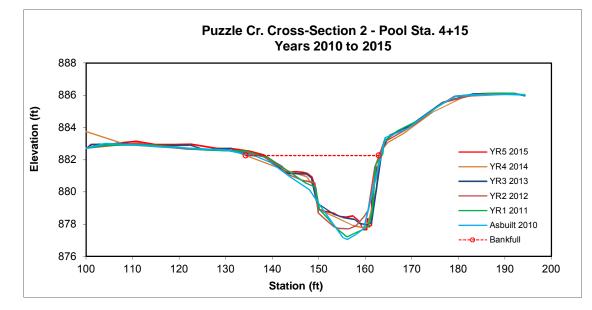
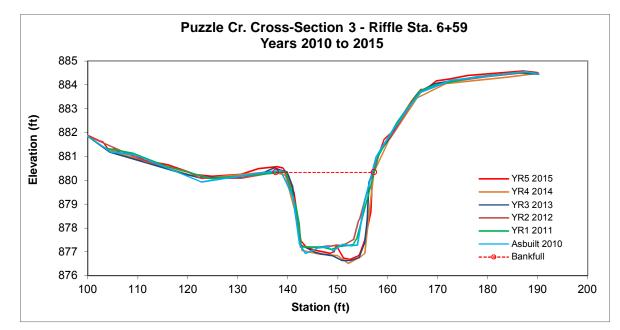


Photo1: XS-1 facing left bank

Photo 2: XS-1 facing right bank

		Stream	BKF Area	BKF	BKF	Max BKF					
Year	Feature	Туре	DKF Alea	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
2015	Riffle	Е	51.9	18.3	2.84	3.82	6.46	1	4.1	880.51	880.57



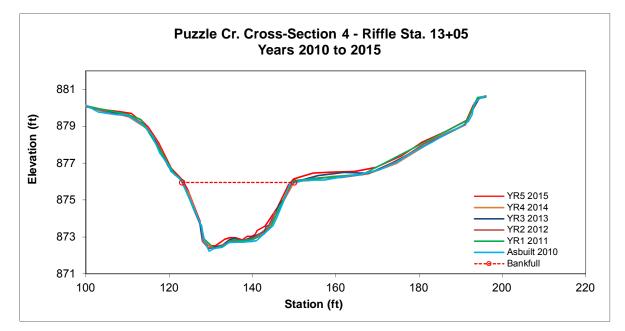
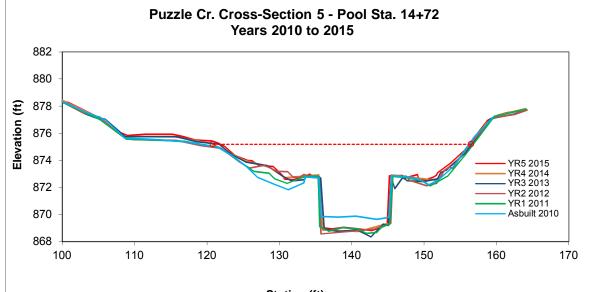


Photo 1: XS-3 facing left bank

Photo 2: XS-3 facing right bank

		Stream	BKF Area	BKF	BKF	Max BKF					
Year	Feature	Туре	BKF Area 58.4	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
2015	Riffle	Е	58.4	25.53	2.29	3.44	11.17	1.1	3.1	875.95	876.14



Fhoto 2: KS-4 facing right bank

Photo 1: XS-4 facing left bank

Year	Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
2015	Pool		102.6	34.4	2.98	6.37	11.53	1	1.9	875.18	875.26

Station (ft)

Photo 1: XS-5 facing left bank

Photo 2: XS-5 facing right bank

Year	Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
2015	Riffle	Е	22.8	13.37	1.71	2.54	7.82	1	4.4	925.43	925.43

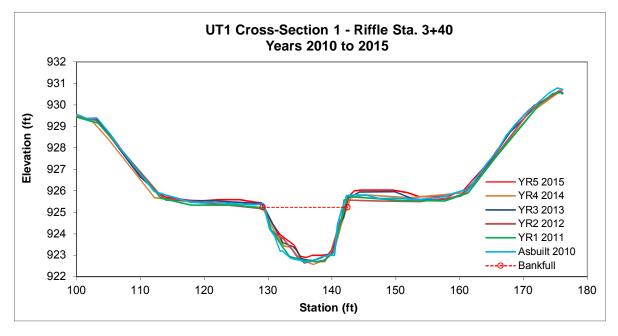


Photo 1: UT1 XS-1 facing left bank

Photo 2: UT1 XS-1 facing right bank

		Stream		BKF	BKF	Max BKF					
Year	Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
2015	Riffle	Е	30.5	19.09	1.59	2.6	11.97	1	4	919.25	919.32

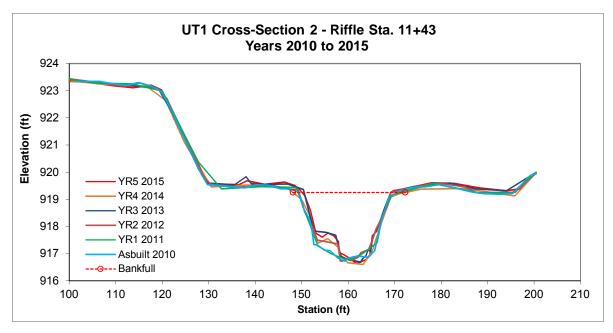


Photo 1: UT1 XS-2 facing left bank

Photo 2: UT1 XS-2 facing right bank

Year	Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
2015	Pool		40.5	30.15	1.34	3.57	22.45	1	2.6	919.14	919.18

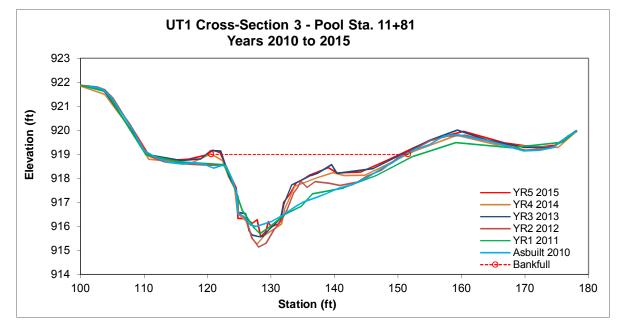


Photo 1: UT1 XS-3 facing left bank

Photo 2: UT1 XS-3 facing right bank

		Stream		BKF	BKF	Max BKF					
Year	Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
2015	Riffle	С	29.8	20.4	1.46	2.4	13.94	1	2.6	913.33	913.35

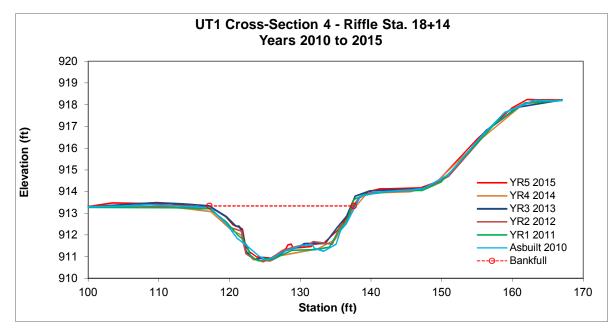
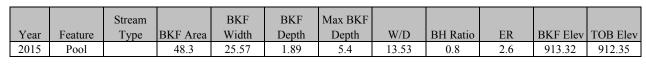



Photo 1: UT1 XS-4 facing left bank

Photo 2: UT1 XS-4 facing right bank

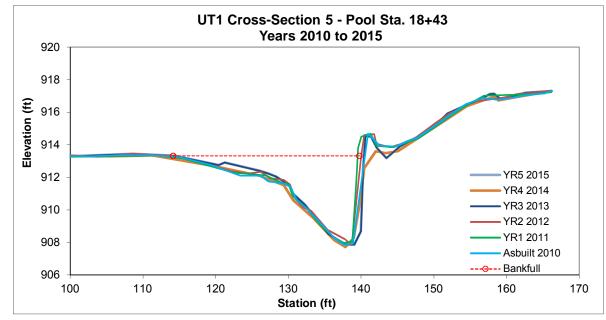
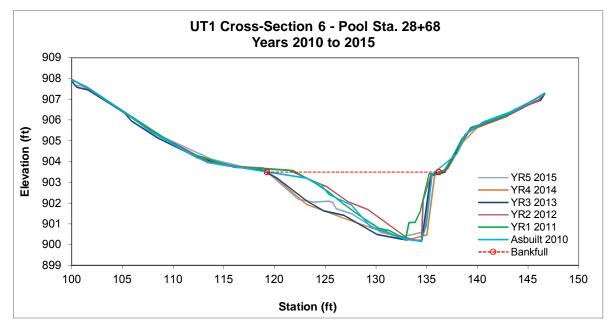


Photo 1: UT1 XS-5 facing left bank

Photo 2: UT1 XS-5 facing right bank

Year	Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
2015	Pool		31.2	16.96	1.84	3.13	9.21	1.1	2.4	903.49	903.66



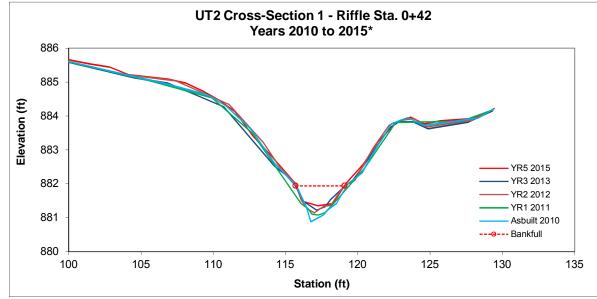
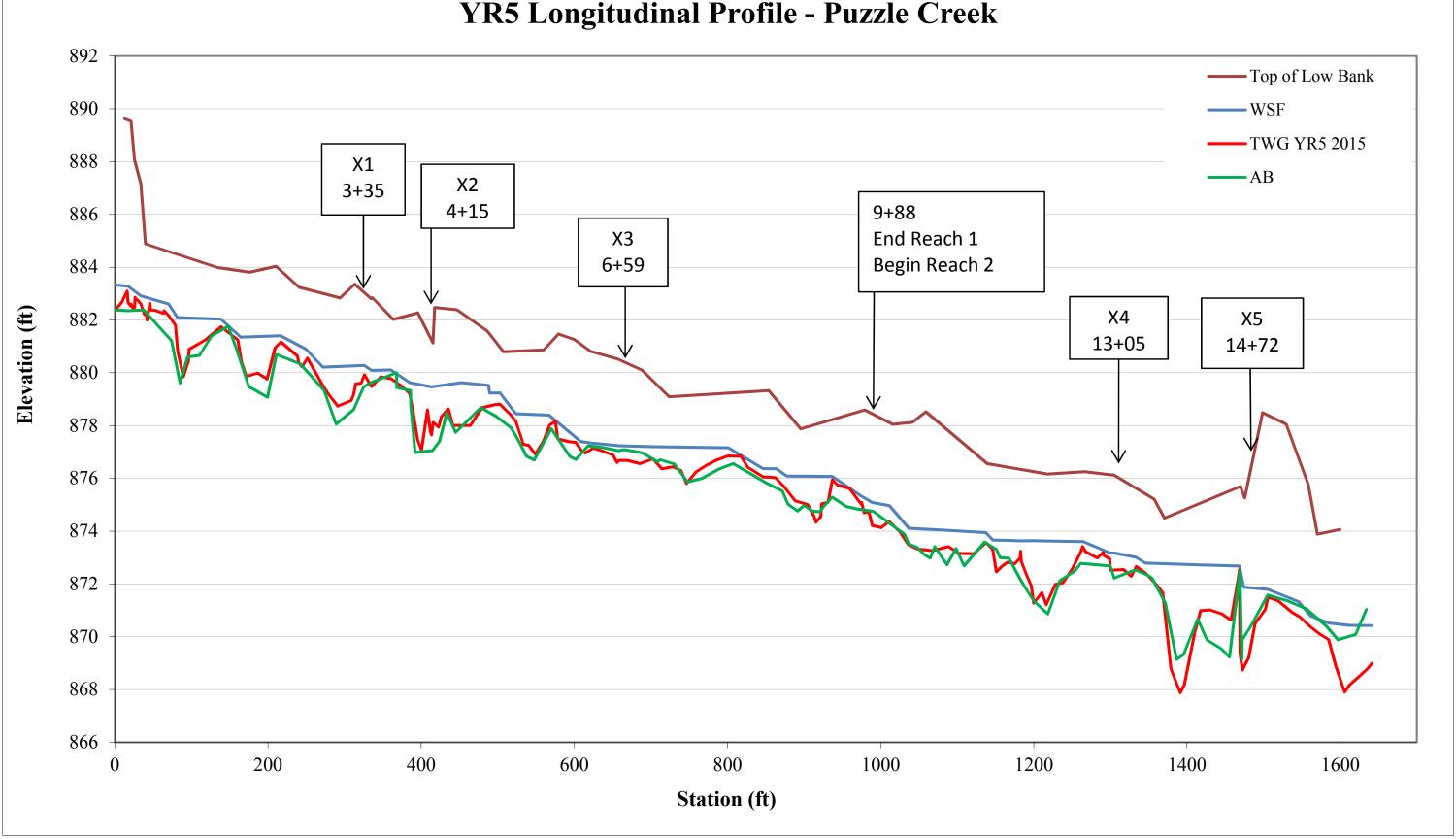


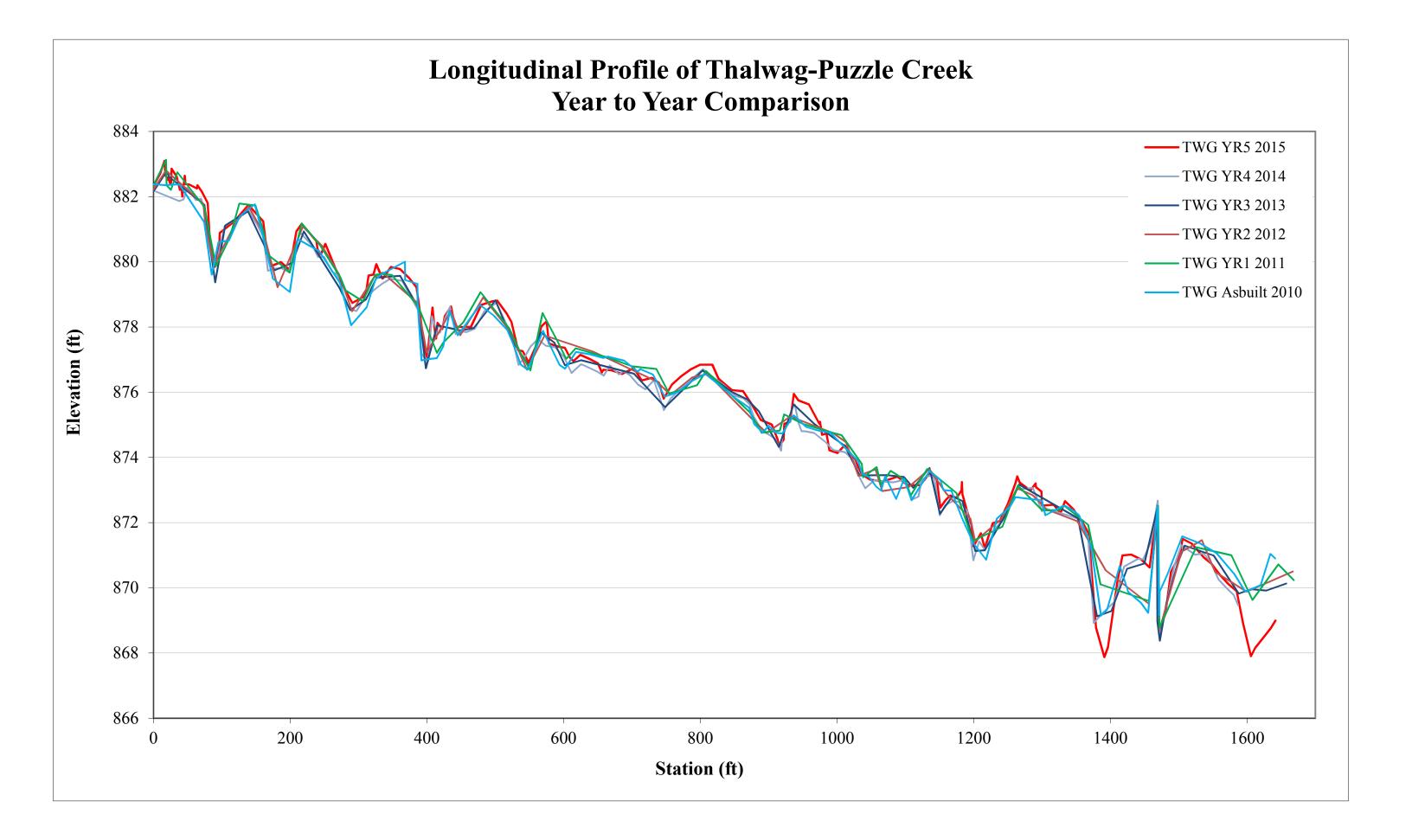
Photo 1: UT1 XS-6 facing left bank

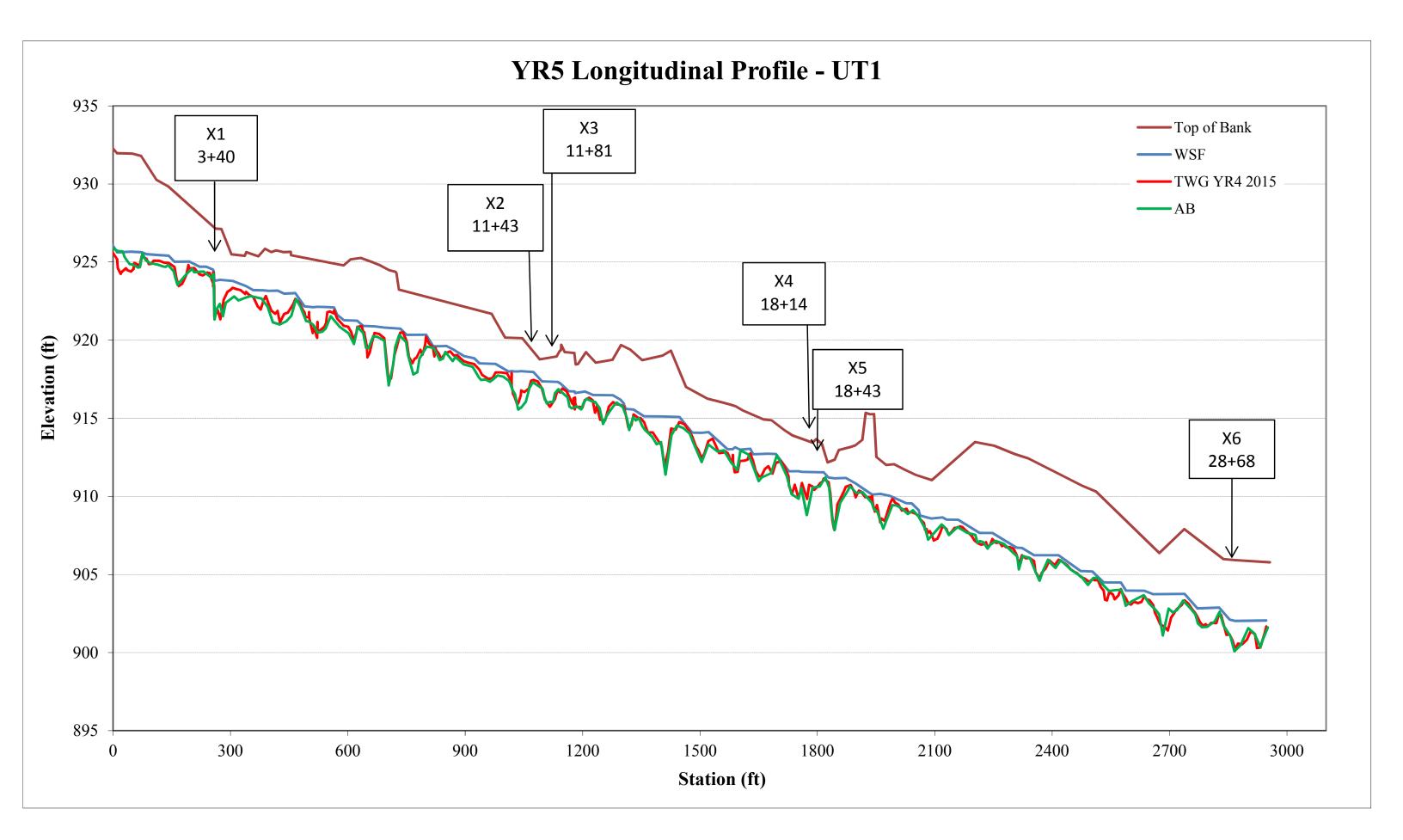
Photo 2: UT1 XS-6 facing right bank

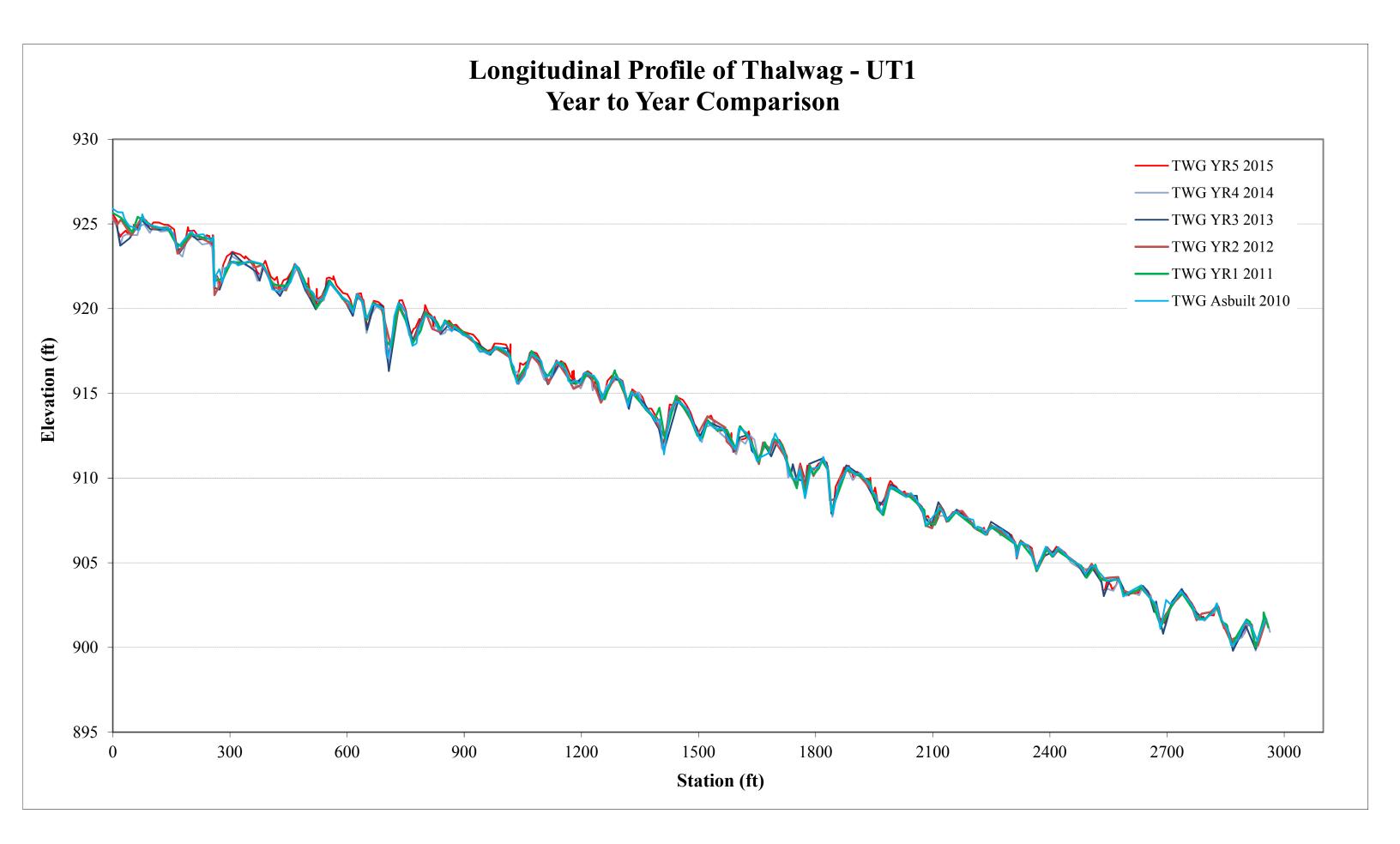
		Stream		BKF	BKF	Max BKF					
Year	Feature	Туре	BKF Area	Width	Depth	Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev
2015	Riffle	Bc	1.7	3.6	0.47	0.66	7.61	1.1	1.7	882.02	882.12

*No data taken in 2014




Photo 21: UT2 XS-1 facing right bank




Photo 22: UT2 XS-1 facing left bank

YR5 Longitudinal Profile - Puzzle Creek

Table 11. Categorical Puzzle Creek Mitigation			Stability As	ssessment		
Puzzle Creek Milligation	ţ		ach 1 (1,000			
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%	100%	100%
Pools	100%	100%	100%	100%	100%	100%
Thalweg	100%	100%	100%	100%	100%	100%
Meanders	100%	100%	100%	100%	100%	100%
	100%	100%	100%	100%	100%	100%
Bed General Bank Condition	100%	100%	98%	95%	99%	99%
Rock/Log Drops	100%	100%	100%	100% 100%	100% 100%	100%
Vanes / J Hooks etc. Wads and Boulders	100%	100%	100%	100%	100%	100%
wads and Boulders					100%	100%
	-		each 2 (634			N/N/ 07
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%	100%	100%
Pools	100%	100%	100%	100%	100%	100%
Thalweg	100%	100%	100%	100%	100%	100%
Meanders	100%	100%	100%	100%	100%	100%
Bed General	100%	100%	100%	100%	100%	100%
Bank Condition	100%	100%	100%	99%	99%	99%
Rock/Log Drops	100%	100%	100%	100%	100%	100%
Vanes / J Hooks etc.	100%	100%	100%	100%	100%	100%
Wads and Boulders	100%	100%	100%	100%	100%	100%
	-	UT1 (3,3	/	•		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
Riffles	100%	100%	100%	100%	100%	100%
Pools	100%	100%	100%	100%	100%	100%
Thalweg	100%	100%	100%	100%	100%	100%
Meanders	100%	100%	100%	100%	100%	100%
Bed General	100%	100%	100%	100%	100%	100%
Bank Condition	100%	100%	100%	100%	100%	100%
Rock/Log Drops	100%	100%	100%	100%	100%	100%
Vanes / J Hooks etc.	100%	100%	100%	100%	100%	100%
Wads and Boulders	100%	100%	100%	100%	100%	100%

	Mitigation Project, No. 92522					
	Puzzle Creek Rea			Total Number	0/ Deafermine	Frature
Feature		(# Stable) Number	Total number	Total Number / feet in unstable	% Performing in Stable	Feature Perfomance
Category	Metric (per As-Built and reference baselines)	Performing	per As-Built	state	Condition	Mean or Tota
A. Riffles	1. Present?	9	9	N/A	100	Wiedii of 10ta
i. Rines	2. Armor stable (e.g. no displacement)?	9	9	N/A	100	
	3. Facet grades appears stable?	9	9	N/A	100	
	4. Minimal evidence of embedding/fining?	9	9	N/A	100	
	5. Length appropriate?	9	9	N/A	100	100%
	5. Length uppropriate:	,	,	10/1	100	100 /0
B. Pools	1. Present? (e.g. not subject to severe aggradation or migration?)	10	10	N/A	100	
D. 1 0015	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	10	10	N/A	100	
	3. Length appropriate?	10	10	N/A	100	100%
	5. Zengui upproprime.	10	10	1011	100	10070
C. Thalweg	1. Upstream of pool (structure) centering?	1	1	N/A	100	
e. marweg	2. Downstream of pool (structure) centering?	1	1	N/A	100	100%
	2. Downstream of poor (structure) contering:	1	1	10/1	100	10070
D. Meanders	1. Outer bend in state of limited/controlled erosion?	6	6	N/A	100	
D. Micanders	2. Of those eroding, # w/concomitant point bar formation?	6	6	N/A N/A	100	
	3. Apparent Rc within spec?	6	6	N/A N/A	100	
	4. Sufficient floodplain access and relief?	6	6	N/A N/A	100	100%
	4. Sufficient floodplain access and refiel?	0	0	N/A	100	100%
E. Bed	1. General channel bed aggradation areas (bar formation)	N/A	N/A	0/0	100	
		N/A	IN/A	0/0	100	
General	2. Channel bed degradation - areas of increasing down-	27/4	27/4	0.10	100	1000/
	cutting or head cutting?	N/A	N/A	0/0	100	100%
F. Vanes,	1. Free of back or arm scour?	1	1	N/A	100	
Rock/Log	2. Height appropriate?	1	1	N/A	100	
Drop	3. Angle and geometry appear appropriate?	1	1	N/A	100	
Structures	4. Free of piping or other structural failures?	1	1	N/A	100	100%
G. Wads/	1. Free of scour?	5	5	N/A	100	
Boulders,						
Coverlogs	2. Footing stable?	5	5	N/A	100	100%
	Puzzle Creek Re	each 2 (634 LF)				
		(# Stable)				
		Number		Total Number	% Performing	Feature
Feature		Performing	Total number	/ feet in unstable	in Stable	Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Tota
A. Riffles	1. Present?	5	5	N/A	100	intent of Fota
i. Itilites	2. Armor stable (e.g. no displacement)?	5	5	N/A	100	
	3. Facet grades appears stable?	5	5	N/A	100	
	4. Minimal evidence of embedding/fining?	5				
		5				
		5	5	N/A	100	1009/
	5. Length appropriate?	5				100%
D. Deele	5. Length appropriate?	5	5 5	N/A N/A	100 100	100%
B. Pools	5. Length appropriate?1. Present? (e.g. not subject to severe aggradation or migration?)	5 6	5 5 6	N/A N/A N/A	100 100 100	100%
B. Pools	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 	5 6 6	5 5 6 6	N/A N/A N/A N/A	100 100 100 100	
B. Pools	5. Length appropriate?1. Present? (e.g. not subject to severe aggradation or migration?)	5 6	5 5 6	N/A N/A N/A	100 100 100	100%
	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 	5 6 6 6	5 5 6 6 6	N/A N/A N/A N/A N/A	100 100 100 100 100	
	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 	5 6 6 6 1	5 5 6 6 6 1	N/A N/A N/A N/A N/A	100 100 100 100 100 100	100%
	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 	5 6 6 6	5 5 6 6 6	N/A N/A N/A N/A N/A	100 100 100 100 100	
C. Thalweg	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 	5 6 6 6 1 1	5 5 6 6 6 1 1	N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100	100%
C. Thalweg	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 	5 6 6 6 1 1 4	5 5 6 6 6 1 1 1 4	N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100	100%
C. Thalweg	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 	5 6 6 1 1 4 4	5 5 6 6 6 1 1 1 4 4	N/A N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100	100%
C. Thalweg	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 	5 6 6 6 1 1 1 4 4 4	5 5 6 6 6 1 1 1 1 4 4 4	N/A N/A N/A N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 	5 6 6 1 1 4 4	5 5 6 6 6 1 1 1 4 4	N/A N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100	100%
C. Thalweg D. Meanders	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 	5 6 6 1 1 4 4 4 4 4 4	5 5 6 6 6 1 1 1 4 4 4 4 4 4	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg D. Meanders E. Bed	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 	5 6 6 6 1 1 1 4 4 4	5 5 6 6 6 1 1 1 1 4 4 4	N/A N/A N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg D. Meanders E. Bed	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- 	5 6 6 1 1 4 4 4 4 4 4	5 5 6 6 6 1 1 1 4 4 4 4 4 4	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg D. Meanders E. Bed	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 	5 6 6 1 1 4 4 4 4 4 4	5 5 6 6 6 1 1 1 4 4 4 4 4 4	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg D. Meanders E. Bed	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 	5 6 6 1 1 4 4 4 4 4 4 1 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	5 5 6 6 6 1 1 1 4 4 4 4 4 4 4 N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg D. Meanders E. Bed General	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down- 	5 6 6 1 1 4 4 4 4 4 4 1 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	5 5 6 6 6 1 1 1 4 4 4 4 4 4 4 N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg D. Meanders E. Bed General F. Vanes,	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 	5 6 6 1 1 1 4 4 4 4 4 4 1 4 N/A N/A	5 5 6 6 6 1 1 1 4 4 4 4 4 4 4 8 N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	 Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? Downstream of pool (structure) centering? Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? Sufficient floodplain access and relief? General channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing down-cutting or head cutting? Free of back or arm scour? Height appropriate? Angle and geometry appear appropriate? 	5 6 6 1 1 1 4 4 4 4 4 4 4 1 N/A	5 5 6 6 1 1 1 4 4 4 4 4 4 4 8 N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	 Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? Downstream of pool (structure) centering? Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? Sufficient floodplain access and relief? General channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing down-cutting or head cutting? Free of back or arm scour? Height appropriate? Angle and geometry appear appropriate? 	5 6 6 1 1 1 4 4 4 4 4 4 4 1 N/A N/A	5 5 6 6 1 1 1 4 4 4 4 4 4 4 4 8 N/A N/A 1 1	N/A N/A N/A N/A N/A N/A N/A N/A N/A 0/0 0/0 0/0	100 100 100 100 100 100 100 100 100 100	100%
C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop	 5. Length appropriate? 1. Present? (e.g. not subject to severe aggradation or migration?) 2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?) 3. Length appropriate? 1. Upstream of pool (structure) centering? 2. Downstream of pool (structure) centering? 1. Outer bend in state of limited/controlled erosion? 2. Of those eroding, # w/concomitant point bar formation? 3. Apparent Rc within spec? 4. Sufficient floodplain access and relief? 1. General channel bed aggradation areas (bar formation) 2. Channel bed degradation - areas of increasing down-cutting or head cutting? 1. Free of back or arm scour? 2. Height appropriate? 	5 6 6 6 1 1 1 4 4 4 4 4 4 4 4 4 1 N/A N/A	5 5 6 6 6 1 1 1 4 4 4 4 4 4 4 4 4 1 N/A N/A 1 1 1	N/A N/A N/A N/A N/A N/A N/A N/A N/A 0/0 0/0 0/0 N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100% 100% 100%
C. Thalweg D. Meanders E. Bed General F. Vanes, Rock/Log Drop Structures	 Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? Downstream of pool (structure) centering? Douter bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? Sufficient floodplain access and relief? General channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing down-cutting or head cutting? Free of back or arm scour? Height appropriate? Argle and geometry appear appropriate? Free of piping or other structural failures? 	5 6 6 6 1 1 1 4 4 4 4 4 4 4 4 4 1 N/A N/A	5 5 6 6 6 1 1 1 4 4 4 4 4 4 4 4 4 1 N/A N/A 1 1 1	N/A N/A N/A N/A N/A N/A N/A N/A N/A 0/0 0/0 0/0 N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100% 100% 100%
D. Meanders D. Meanders E. Bed General F. Vanes, Rock/Log Drop	 Length appropriate? Present? (e.g. not subject to severe aggradation or migration?) Sufficiently deep (Max Pool D:Mean Bkf >1.6?) Length appropriate? Upstream of pool (structure) centering? Downstream of pool (structure) centering? Outer bend in state of limited/controlled erosion? Of those eroding, # w/concomitant point bar formation? Apparent Rc within spec? Sufficient floodplain access and relief? General channel bed aggradation areas (bar formation) Channel bed degradation - areas of increasing down-cutting or head cutting? Free of back or arm scour? Height appropriate? Angle and geometry appear appropriate? 	5 6 6 6 1 1 4 4 4 4 4 4 4 1 1 1 1 1 1	5 5 6 6 6 1 1 1 4 4 4 4 4 4 4 4 4 4 1 1 1 1	N/A N/A N/A N/A N/A N/A N/A N/A N/A 0/0 0/0 0/0 N/A N/A N/A N/A N/A	100 100 100 100 100 100 100 100 100 100	100% 100% 100%

	UT1 (3,;	339 LF)				
		(# Stable)				
		Number		Total Number	% Performing	Feature
Feature		Performing	Total number	/ feet in unstable	in Stable	Perfomance
Category	Metric (per As-Built and reference baselines)	as Intended	per As-Built	state	Condition	Mean or Total
A. Riffles	1. Present?	26	26	N/A	100	
	2. Armor stable (e.g. no displacement)?	26	26	N/A	100	
	3. Facet grades appears stable?	26	26	N/A	100	
	4. Minimal evidence of embedding/fining?	26	26	N/A	100	
	5. Length appropriate?	26	26	N/A	100	100%
B. Pools	1. Present? (e.g. not subject to severe aggradation or migration?)	24	24	N/A	100	
B. 1 0013	2. Sufficiently deep (Max Pool D:Mean Bkf >1.6?)	24	24	N/A	100	
	3. Length appropriate?	24	24	N/A	100	100%
				/ -	100	
C. Thalweg	1. Upstream of pool (structure) centering?	1	1	N/A	100	1000/
	2. Downstream of pool (structure) centering?	1	1	N/A	100	100%
D. Meanders	1. Outer bend in state of limited/controlled erosion?	21	21	N/A	100	
	2. Of those eroding, # w/concomitant point bar formation?	21	21	N/A	100	
	3. Apparent Rc within spec?	21	21	N/A	100	
	4. Sufficient floodplain access and relief?	21	21	N/A	100	100%
E. Bed	1. General channel bed aggradation areas (bar formation)	N/A	N/A	0/0	100	
General	2. Channel bed degradation - areas of increasing down-					
	cutting or head cutting?	N/A	N/A	0/0	100	100%
F. Vanes,	1 Free of back or arm scour?	1	1	N/A	100	
r. valles, Rock/Log	2. Height appropriate?	1	1	N/A N/A	100	
Drop	3. Angle and geometry appear appropriate?	1	1	N/A	100	
Structures	4. Free of piping or other structural failures?	1	1	N/A N/A	100	100%
C W 1/						
G. Wads/ Boulders,	1. Free of scour?	13	13	N/A	100	
Coverlogs	2. Footing stable?	13	13	N/A	100	100%

Table 13. Stream Reach Morphology and Hydraulic DataPuzzle Creek Restoration Project #92522

Baseline Stream Summ Puzzle Creek: Reach											1														
Parameter	Regional Curve Equation	Refere	ence Rea Data	ich(es)		Design			(As-Built)			Yr 1			Yr 2			Yr 3			Yr 4			Yr 5	
Dimension - Riffle	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max		Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	17.9	7.8	11.3	14.8		22.0		19.8	18.4	21.3	17.7	18.0	18.4	18.3	18.6	18.8	17.0	18.2	19.4	19.6		21.4		17.9	18.3
Floodprone Width (ft)		17	39	62		100+		69	74	80	66	73	80	66	72	78	69	75	80	76	78	80	74	77	80
Bankfull Mean Depth (ft)	2.03	0.80	1.45	2.10		1.90		2.10	2.30	2.49	2.21	2.34	2.46	2.03	2.18	2.33		2.51	2.9	2.09	2.4	2.65			2.84
Bankfull Max Depth (ft)		1.30	1.95	2.60		2.5		3.28	3.38	3.47	3.12	3.18	3.24	3.00	3.10	3.20	3.45	3.58	3.7	3.44	3.6		3.64	3.73	3.82
Bankfull Cross Sectional Area (ft2)	40.8	7.5	19.3	31.0		42.5		44.7	45.2	45.7	40.8	42.1	43.4	38.1	40.4	42.7	41.0	45.3	49.5	44.7	48.4	52.1	48.7		51.9
Width/Depth Ratio		5.4	8.3	11.1		11.6		7.4	8.8	10.1	7.2	7.8	8.3	7.9	8.5	9.2	5.9	7.5	9.1	7.4	8.8	10.2	6.2	6.3	6.5
Entrenchment Ratio		1.8	4.9	7.9		>4.5		3.7	3.8	3.8	3.7	4.0	4.4	3.6	3.9	4.2	4.1	4.1	4.1	3.3	3.8	3.9	3.9	4.0	4.1
Bank Height Ratio		1.3	1.4	1.4		1.3		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.2	1.3	1.4	1.0	1.0	1.0	1.0	1.1	1.1
Bankfull Velocity (fps)		3.1	9.9	3.3		4.5			4.2			4.5			4.7			4.2			3.9			3.8	
Pattern																									
Channel Beltwidth (ft)			62		68		156	75	92	117	75	92	117	75	92	117	75	92	117	75	92	117	75	92	117
Radius of Curvature (ft)			13		35		68	20	39	81	20	39	81	20	39	81	20	39	81	20	39	81	20	39	81
Meander Wavelength (ft)			64		136		160	137	155	173	137	155	173	137	155	173	137	155	173	137	155	173	137	155	173
Meander Width Ratio		6.0	7.0	8.0	3.1		7.1		5.0			5.1			5.0			5.1			4.5			5.2	
Profile																									
Riffle Length (ft)					25		100	31	60	113	24	65	115	24	62	93	25	62	83	53	89	170	21.7	64.1	127.5
Riffle Slope (ft/ft)		0.001	0.029	0.058		0.014		0.005	0.012	0.019	0.003	0.013	0.028	0.006	0.015	0.028	0.004	0.020	0.045	0.002	0.010	0.024	0.011	0.017	0.023
Pool Length (ft)					7		60	34	57	86	14	35	63	56	79	106	57	86	110	29	49	64	80.9	101.6	122.7
Pool Spacing (ft)		24	33	42	58		136	55	115	168	52	109	147	93	122	147	87	124	151	81	137	213	82.3	139.8	197.5
Substrate and Transport Parameters												•													
d16 / d35 / d50 / d84 / d95		.5/.35/	92/30.04	4/56.91																					
Reach Shear Stress (competency) lb/f2*						0.90			0.90			1.19			1.80			2.00			1.42			2.11	
Stream Power (transport capacity) W/m2*						4.0			3.8			5.4			8.5			8.4			5.6			8.0	
Additional Reach Parameters				<u> </u>																					
Channel length (ft)						1000			1000			1000			1000			1000			1000			1000	
Drainage Area (SM)		0.2	1.9	2.3		2.6			2.6			2.6			2.6			2.6			2.6			2.6	
Rosgen Classification			C/E4			C4-5			E4			E4			E4			E4			E4			E4	
Bankfull Discharge (cfs)	176.56		190			190			190			190			190			190			190			190	
Sinuosity			1.9			1.3			1.3			1.4			1.4			1.4			1.4			1.4	
BF slope (ft/ft)			0.009		0.009	0.009	0.009		0.009			0.009			0.009			0.009			0.009			0.009	
* Substrate and Transport Parameters were rec	alculated and have h	een cha		indicat					0.000	1		0.000			2.000			2.000			2.000			2.000	

Puzzle Creek Restoration Project #925	22																								
									eam Su	-															
							Puz	zle Cre	ek: Rea	ach 2															
Parameter	Regional Curve Equation	Refere	ence Rea Data	ach(es)		Desigr	ו	((As-Buil	t)		Yr 1			Yr 2			Yr 3			Yr 4			Yr 5	
Dimension - Riffle	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	24.7	7.8	11.3	14.8		25.0			25.6			26.6			26.0			26.1			26.9			25.5	
Floodprone Width (ft)		17	39	62		100+			82			84			81			81			82.6			78.8	
Bankfull Mean Depth (ft)	2.58	0.80	1.45	2.10		2.10			2.48			2.48			2.39			2.39			2.4			2.3	
Bankfull Max Depth (ft)		1.30	1.95	2.60		2.70			3.66			3.66			3.54			3.58			3.6			3.4	
Bankfull Cross Sectional Area (ft2)	68.0	7.5	19.3	31.0		52.6			63.4			66.1			62.2			62.4			63.4			58.4	
Width/Depth Ratio		5.4	8.3	11.1		11.9			10.4			10.7			10.9			11.0			11.4			11.2	
Entrenchment Ratio		1.8	4.9	7.9		>4.0			3.2			3.2			3.1			3.1			3.1			3.1	
Bank Height Ratio		1.3	1.4	1.4	1.0		1.2		1.0			1.0			2.2			2.1			1.0			1.1	
Bankfull Velocity (fps)		3.1	9.9	3.3		4.8			3.9			3.8			4.0			4.0			3.9			4.3	
Pattern																									
Channel Beltwidth (ft)			62		87		198	62	113	154	62	113	154	62	113	154	62	113	154	62	113	154	62	113	154
Radius of Curvature (ft)			13		45		62	37	46	53	37	46	53	37	46	53	37	46	53	37	46	53	37	46	53
Meander Wavelength (ft)			64		174		248	234	256	269	234	256	269	234	256	269	234	256	269	234	256	269	234	256	269
Meander Width Ratio		6.0	7.0	8.0	3.5		7.9		4.4			4.3			4.3			4.3			4.2			4.4	
Profile									•																
Riffle Length (ft)					25		100	32	56	87	42	64	98	60	76	85	48	70	86	67	86	105	45.3	68.9	82.1
Riffle Slope (ft/ft)		0.001	0.029	0.058		0.016		0.005	0.011	0.019	0.005	0.008	0.012	0.009	0.009	0.010	0.013	0.016	0.019	0.013	0.017	0.022	0.009	0.014	0.020
Pool Length (ft)					7		60	34	53	83	53	65	77	58	78	106	49	73	101	26	62	92	80.9	101.6	122.7
Pool Spacing (ft)		24	33	42	74		174	85	121	168	79	121	182	104	133	165	92	125	164	132	156		131.9	161.7	191.4
Substrate and Transport Parameters									•																
d16 / d35 / d50 / d84 / d95		.5/.35/	.92/30.04	4/56.91													-								
Reach Shear Stress (competency) lb/f2*						1.1			1.1			1.3			2.0			2.0			1.5			2.0	
Stream Power (transport capacity) W/m2*						5.1			4.2			5.0			8.0			8.0			5.9			8.4	
Additional Reach Parameters						•	<u> </u>		<u> </u>			<u> </u>							<u> </u>						
Channel length (ft)						634			634			634			634			634			634			634	
Drainage Area (SM)		0.2	1.9	2.3		4.2			4.2			4.2			4.2			4.2			4.2			4.2	
Rosgen Classification			C/E4			C4-5			E/C4			E/C4			E/C4			E/C4			E/C4			E/C4	
Bankfull Discharge (cfs)	250		190			250			250			250			250			250			250			250	
Sinuosity			1.9			1.2			1.2			1.2			1.2			1.2			1.2			1.2	
BF slope (ft/ft)			0.009			0.008			0.008			0.011			0.010			0.010			0.010			0.010	
* Substrate and Transport Parameters were r	ecalculated and have	been cha		indicate	the new		1												1						

 Table 13. Stream Reach Morphology and Hydraulic Data

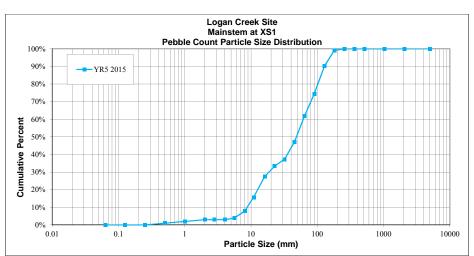
Table 13. Stream Reach Morphology and Hydraulic Data

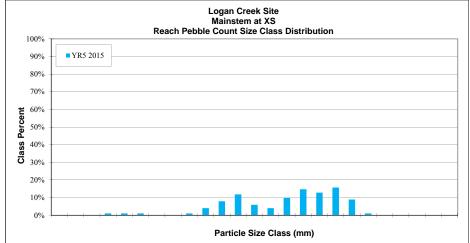
Table 13. Stream Reach Morphology	-																								
Puzzle Creek Restoration Project #92	2522																								
						Bas	seline S	Stream	Summa	ary: U1	Г1														
Parameter	Regional Curve Equation	Refere	nce Rea Data	ach(es)		Design	1		As-Built	t		Yr 1			Yr 2			Yr 3			Yr 4*			Yr 5	
Dimension - Riffle	Eq.	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max
Bankfull Width (ft)	14.6	7.8	11.3	14.8	14.0		18.0	12.4	17.8	20.4	12.5	16.9			16.9	20.0	13.2	14.4	20.1	12.3		20.2	12.3		
Floodprone Width (ft)		16.7	39.1	61.5		50+		44.1	58.1	76.1		57.3			57.7	77.0	41.6	58.1	77.1	43.0		76.3			76.3
Bankfull Mean Depth (ft)	1.74	0.80	1.45	2.10	1.50		1.70	1.53	1.69	1.99	1.54	1.67	1.85			1.74	1.5	1.7	1.9	1.5	1.6	1.9	1.5	1.7	1.9
Bankfull Max Depth (ft)		1.3	2.0	2.6				2.3	2.73	3.5	2.4	2.64	3.3	2.5	2.74	3.4	2.5	2.7	3.3	2.5	2.8	3.3	2.5	2.8	3.3
Bankfull Cross Sectional Area (ft2)	29.5	7.5	19.3	31.0	24.0		28.0	24.6	29.5	31.9	23.1	28.0	33.8	21.3	26.7	32.9	23.7	29.3	33.2	21.3	27.3	33.8	21.3	27.5	33.8
Width/Depth Ratio		5.4	8.3	11.1	8.2		12.0	6.2	10.9	13.1	6.7	10.3	13.0	7.1	10.7	13.6	7.4	10.4	13.5	7.1	10.3	13.0	7.1	10.1	13.0
Entrenchment Ratio		1.8	4.9	7.9				2.3	3.4	4.8	2.7	3.5	4.7	2.7	3.5	4.7	2.3	3.4	4.5	2.7	3.6	4.7	2.7	3.7	4.7
Bank Height Ratio		1.3	1.4	1.4	1.0		1.2	0.9	1.0	1.0	1.0	1.0	1.0	1.1	1.8	2.7	1.1	1.8	2.5	1.0	1.3	1.8	1.0	1.4	1.8
Bankfull Velocity (fps)		3.1	1.3	3.3		5.4		4.4	4.8	5.7	4.1	5.0	6.1	4.3	5.2	6.6	4.2	4.8	5.9	4.1	5.1	6.6	4.1	5.1	6.6
Pattern			•							•															
Channel Beltwidth (ft)			62		50		93	44	66	87	44	66	87	44	66	87	44	66	87	44	66	87	44	66	87
Radius of Curvature (ft)			13		28		52	23	39	54	23	39	54	23	39	54	23	39	54	23	39	54	23	39	54
Meander Wavelength (ft)			64		130		213	143	175	220	143	175	220	143	175	220	143	175	220	143	175	220	143	175	220
Meander Width Ratio		6	6	6	4		5	2	4	5	3	4	5	3	4	5	3	5	6	3	4	5	3	4	5
Profile																									
Riffle Length (ft)					22		100	25	46	55	23	51	85	22	51	90	21	41	66	12	51	154	7.2	40.3	106.3
Riffle Slope (ft/ft)		0.0006	0.0291	0.0576	0.0120		0.0200	0.0060	0.0122	0.0169	0.005	0.019	0.035	0.005	0.019	0.039	0.004	0.019	0.029	0.004	0.017	0.061	0.005	0.024	0.069
Pool Length (ft)					25		50	17	33	52	13	22	38	35	43	57	34	46	64	27	52	96	23.6		
Pool Spacing (ft)		24	33	42	50		90	56	91	127	55	92	131	55	91	135	61	94	136	55	92	168	45.0	88.6	148.1
Substrate and Transport Parameters			•							•															
d16 / d35 / d50 / d84 / d95		.5	.4/.9/30/	/57	na	/.4/1/30	/57	.6/1	11/21/74/	/114	.3/	6/14/60	/98	.22/7	7/13/45	/128	15/3	3/46/88	3/140	21/3	8/50/87	/180	11/26	6/48/11 ⁻	1/154
Reach Shear Stress (competency) lb/f2						1.24			1.14			1.66			1.10			1.70			1.45			1.34	
Stream Power (transport capacity) W/m2						6.66			5.40			8.31			5.74			8.11			7.44			6.82	
Additional Reach Parameters																			-						
Channel length (ft)	2975			·		3,246			3,339			3,339			3,339			3,339			3,339			3,339	
Drainage Area (SM)		0.20	1.25	2.30		1.60			1.60			1.60			1.60			1.60			1.60			1.6	
Rosgen Classification			E5			C4-5			E/C4			E/C4			E/C4			E/C4			E/C4			E/C4	
Bankfull Discharge (cfs)		23	26	29		140			140			140			140			140			140			140	
Sinuositý	1.2		1.9			1.3			1.3			1.3			1.3			1.3			1.3			1.3	
BF slope (ft/ft)						0.016			0.016			0.009			0.010			0.010			0.010			0.010	
*Some numbers corrected from earlier repo	orts.	-	-	-		-		-	-	•	-			-			-	-	-	-				-	

Table 14. Cross-section Morphology and Hydraulic Data

Puzzle Creek Restoration P	roject, l	No. #92	522																			
								Puzzle	e Creel	 Reach	1											
			Cross S	Section	1				Cross	Section 2	2			С	ross Se	ection 3						
Parameter				ffle					F	Pool					Riff							
	AB	MY1	MY2	MY3	MY4	MY5	AB	MY1	MY2	MY3	MY4	MY5	AB	MY1	MY2	MY3	MY4	MY5				
Dimension		-	-	-										-			-					
BF Width (ft)	21.3	18.4	18.8	19.4	21.4	17.4	23.3	24.1	24.9	25.6	21.4	25.0	18.4	17.7	18.3		19.64					
Floodprone Width (ft)	80.1	80.1	78.3	80.0	80.0	>80	94.3	94.3	94.3	94.2	94.3	>94	68.7	65.9	66.0		76.00					
BF Cross Sectional Area (ft2)	44.7	40.8	38.1	41.0		48.7	56.8	62.1	60.2	60.2	63.3	57.0	45.7	43.4	42.7	49.5						
BF Mean Depth (ft)	2.10	2.21	2.03	2.12	2.09	2.80	2.44	2.58		2.35	2.21	2.28	2.49	2.46	2.33		2.65	2.84				
BF Max Depth (ft)	3.28	3.12	3.00	3.45	3.44	3.64	4.75	4.90	4.48	4.29	4.50	4.61	3.47	3.24	3.20	3.70	3.82	3.82				
Width/Depth Ratio	10.1	8.3	9.2	9.1	10.2	6.2	9.5	9.4	10.3	10.9	13.0	10.9	7.4	7.2	7.87	5.87	7.40	6.46				
Entrenchment Ratio Wetted Perimeter (ft)	3.8 25.5	4.4 22.9	4.2 22.8	1.2 23.6	3.7	3.9 23.0	4.1 28.1	3.9 29.3	3.8 29.7	3.7 30.3	3.3 25.8	3.8	3.7 23.4	3.7 22.6	3.6 23.0	4.1	3.90	4.10				
	25.5	1.8	1.7	23.0	25.6 1.7	23.0	20.1	29.3	29.7	2.0	25.6	29.5 1.9	23.4	1.9	1.9	22.8 2.2	24.9 2.1	24.0 2.2				
Hydraulic Radius (ft) Substrate	1.0	1.0	1.7	1.7	1.7	Z. I	2.0	Z. I	2.0	2.0	2.5	1.9	2.0	1.9	1.9	Ζ.Ζ	2.1	2.2				
d50 (mm)	-	- 1	-	- 1	-	-	-	-	-	-	-	-	-	- 1	-	-	-	-				
d84 (mm)	-	-	-	-	-	-	-	-	-		_	-	-	-	-	-	-	-				
	_		-	-	Puz	zle Cree	k Reach	2	-			_	-	_	_	_	_	-				
			Cross S	Section			K Neach	2	Cross	Section	5											
Parameter				ffle	+					Pool	5											
i arameter	AB	MY1	MY2		MY4	MY5	AB	MY1	MY2		MY4	MY5										
Dimension	7.0		=				7.2		=													
BF Width (ft)	25.6	26.6	26.0	26.1	26.9	25.5	34.6	34.7	34.0	34.9	26.92	34.40										
Floodprone Width (ft)	82.2	83.8	80.5	81.3		78.8	59.5	64.1	64.3	64.1	64.10	>64										
BF Cross Sectional Area (ft2)	63.4	66.1	62.2	62.4	63.4	58.4	99.9	105.8		108.30	63.40	102.6										
BF Mean Depth (ft)	2.48	2.49	2.39	2.39	2.35	2.29	2.89	3.05		3.10	2.35	2.98										
BF Max Depth (ft)	3.66	3.66	3.54	3.58	3.61	3.44	5.34	6.33	6.32	6.83	3.61	6.37										
Width/Depth Ratio	10.4	10.7	10.9	11.0	11.4	11.2	12.0	11.4	11.5	11.3	11.44	11.52										
Entrenchment Ratio	3.2	3.2	3.1	3.1	3.1	3.1	1.7	1.9	1.9	1.8	3.10	1.90										
Wetted Perimeter (ft)	30.6	31.5	30.8	30.9	31.6	30.1	40.3	40.8	39.9	41.1	31.6	40.4										
Hydraulic Radius (ft)	2.1	2.1	2.0	2.0	2.0	1.9	2.5	2.6	2.5	2.6	2.0	2.5										
Substrate			-																			
d50 (mm)	-	-	-	-	-	-	-	-	-	-	-	-										
d84 (mm)	-	-	-	-	-	-	-	-	-	-	-	-					-					
Parameter		AB (2010				IY-1 (201				/IY-2 (20				Y-3 (201				/-4 (2014)			MY-5 (2015)	
	Min M	a x	Med	4	Min	Max	Med		Min	Max	Med		Min	Max	Med	-	Min	Max N	/led	ŀ	Min Max Med	
Pattern		454	400	-		454	400		- 00	454	400		- 00	454	400	-	- 00	454	100	-	00 454 400	
Channel Beltwidth (ft) Radius of Curvature (ft)	62 20	154 81	103 42	-	62 20	154 81	103 42		62 20	154 81	103 42		62 20	154 81	103 42	-	62 20		103 42	-	62 154 103 20 81 42	
Meander Wavelength (ft)	137	269	206	-	137	269	206		137	269	42 206		137	269	206	-	137		42 206	-	137 269 206	
Meander Wavelength (it)	2.9	7.1	4.7	-	3.0	7.4	4.9		2.9	7.3	4.9		3.0	7.4	4.9	-	2.7		4.5	-	137 269 206 3.0 7.5 5.0	
Profile	2.5	1.1	4.7	-	5.0	7.4	4.5		2.5	7.5	4.5		5.0	7.4	4.5	-	2.1	0.0	+.5		3.0 7.3 3.0	
Riffle length (ft)	31	113	60	-	24	115	64		24	93	67		25	83	74	-	53	170	86		21.7 127.5 63.1	
Riffle Slope (ft/ft)	0.005	0.019	0.013	-	0.003	0.028	0.010		0.006	0.028	0.016		0.004	0.045	0.016	-			.012		0.009 0.023 0.015	
Pool Length (ft)	34	86	57	-	14	77	58		56	106	75		57	110	101		26		54		51.4 122.7 71.9	
Pool Spacing (ft)		168	115	-	52	182	115		93	147	122		87	151	124		81		142		82.3 197.5 148.6	
· · · · · · · · · · · · · · · · · · ·															1	-						
Substrate																						
d50 (mm)												1										
d84 (mm)																						
Additional Reach Parameters																						
Valley Length (ft)		1,281				1,281				1,281				1,281				1,281			1,281	
Channel Length (ft)		1,634				1,634				1,634				1,634				1,634			1,634	
Sinuosity		1.3				1.4				1.4				1.4			L	1.4			1.4	
Water Surface Slope (ft/ft)		0.008				0.008			L	0.007			<u> </u>	0.007			L	0.007			0.007	
BF Slope (ft/ft)		0.009				0.009			L	0.008			L	0.008			L	0.008			0.008	
Rosgen Classification		E/C4				E/C4			E/C4													

										UT1														
			Cross S		1				Cross	Section	2			С	ross Se						Cross S		4	
Parameter			Ri							Riffle					Poo							fle		
	AB	MY1	MY2	MY3	MY4	MY5	AB	MY1	MY2	MY3	MY4	MY5	AB	MY1	MY2	MY3	MY4	MY5	AB	MY1	MY2	MY3	MY4	MY5
Dimension			•																					
BF Width (ft)	12.4	12.5	12.3	13.2	13.3	13.4	19.0	20.2	19.8	18.7	24.2	19.1	24.8	27.4	25.6	29.6		30.2	20.4	20.1	20.0	20.1	24.8	
Floodprone Width (ft)	59.1	58.2	57.3	59.9	60.0	59.1	76.1	76.3	77.0	77.1	77.7	>77	72.1	73.7	78.1	78.0	78.1	>78	53.3	53.2	53.5	53.8	53.3	
BF Cross Sectional Area (ft2)	24.6	23.1	21.3	23.7	23.4	22.8	31.9	33.8	32.9	30.3	34.6	30.5	32.9	36.4	33.5	41.2	42.4		31.7	30.8	29.4	30.0	33.2	
BF Mean Depth (ft)	1.99	1.85	1.74	1.80	1.76	1.71	1.68	1.67	1.66	1.62	1.43	1.59	1.33	1.33	1.31	1.39	1.4		1.55	1.54	1.47	1.49	1.34	1.46
BF Max Depth (ft)	2.62	2.48	2.52	2.64	2.66	2.54	2.33	2.42	2.54	2.56	2.65	2.60	2.47	2.87	3.42	3.57	3.7		2.42	2.40	2.45	2.50	2.47	2.40
Width/Depth Ratio	6.2	6.7	7.1	7.4	7.6	7.8	11.3	12.1	12.0	11.5	16.9	12.0	18.7	20.6	19.5	21.2	22.6	22.5	13.1	13.0	13.6	13.5	18.5	13.9
Entrenchment Ratio	4.8	4.7 16.2	4.7	4.5	4.5	4.4	4.0	3.8	3.9	4.1	1.0	4.0	2.9	2.7	3.1 28.2	2.6 32.4	2.5	2.6		2.7	2.7	2.7	2.1	2.6
Wetted Perimeter (ft) Hydraulic Radius (ft)	16.4 1.5	10.2	15.8 1.4	16.8 1.4	16.8 1.4	16.8 1.4	22.4	23.6 1.4	23.1 1.4	21.9 1.4	27.0	22.3 1.4	27.5 1.2	30.0 1.2			33.7 1.3	32.8 1.2	23.5 1.3	23.1 1.3	22.9	23.1 1.3	27.5	
Substrate	1.5	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.3	1.4	1.2	1.2	1.2	1.3	1.3	1.2	1.5	1.3	1.3	1.5	1.2	1.3
d50 (mm)												48.3												
d30 (mm) d84 (mm)												111.4												
			Cross S							Section		111.7												
Parameter				ool	,					Pool	0													
	AB	MY1	MY2		MY4	MY5	AB	MY1	MY2	MY3	MY4	MY5	1											
Dimension	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				1 101 4		1											
BF Width (ft)	25.5	27.6	25.8	26.0	29.0	25.6	19.6	14.9	15.5	17.7	16.8	17.0	1											
Floodprone Width (ft)	66.3	66.2	66.2	66.1	66.2	>66	44.1	41.4	43.0	41.6	41.4	>40	1											
BF Cross Sectional Area (ft2)	53.2	52.3	50.7	52.7	55.8	48.3	30.0	24.2	23.3	33.2	34.5	31.2	1											
BF Mean Depth (ft)	2.09	1.90	1.96	2.02	1.92	1.89	1.53	1.62	1.51	1.87	2.06	1.84												
BF Max Depth (ft)	5.39	5.38	5.49	5.45	5.54	5.40	3.53	3.26	3.44	3.29	3.29	3.13												
Width/Depth Ratio	12.2	14.6	13.2	12.9	15.1	13.5	12.8	9.2	10.3	9.5	8.1	9.2												
Entrenchment Ratio	2.6	2.4	2.6	2.5	2.3	2.6	2.3	2.8	2.8	2.1	2.5	2.4												
Wetted Perimeter (ft)	29.6	31.4	29.8	30.1	32.9	29.4	22.6	18.1	18.5	21.4	20.9	20.6												
Hydraulic Radius (ft)	1.8	1.7	1.7	1.8	1.7	1.6	1.3	1.3	1.3	1.5	1.7	1.5												
Substrate			•																					
d50 (mm)																								
d84 (mm)																								
Parameter		AB (2010	<i>.</i>	-		IY-1 (201	,			1Y-2 (20				Y-3 (201				/-4 (20 ⁻				/-5 (201		
D. //	Min M	a x	Med		Min	Max	Med		Min	Max	Med		Min	Max	Med		Min	Max	Med		Min	Max	Med	
Pattern	04	110			04	110	77		01	440	77		- 01	440	77		04	110	77		61	110	77	
Channel Beltwidth (ft)*	61	110	77	-	61	110	77		61	110	77		61	110	77		61	110	77		61	110	77	
Radius of Curvature (ft)	23	54 220	39 175	-	23	54 220	39 175		23 143	54 220	39 175		23	54 220	39 175		23	54	39 175		23	54 220	39 175	
Meander Wavelength (ft) Meander Width Ratio	143 3.5	6.4	4.5	-	143 3.5	6.3	4.4		3.5	6.3	4.4		143 3.5	6.4	4.4		143 2.9	220 5.3	3.7		143 3.5	6.2	4.4	
Profile	5.5	0.4	4.5	-	5.5	0.5	4.4		5.5	0.5	4.4		5.5	0.4	4.4		2.5	5.5	5.7		5.5	0.2	4.4	-
Riffle length (ft)	25	55	52	-	23	85	58		22	90	44		21	66	42		12	154	39		7.2	106.3	31.3	
Riffle Slope (ft/ft)	0.006	0.017	0.011		0.005	0.035	0.016		0.005	0.039	0.018		0.004	0.029	0.020				0.013		0.005			
Pool Length (ft)	17	52	30		13	38	22		35	57	41		34	64	43		27	96	50		23.6	97.4	53.2	-
Pool Spacing (ft)	56	127	95		55	131	89		55	135	84		61	136	92		55	168	91		45.0	148.1	84.4	
						·	·				·													
Substrate																								
d50 (mm)		21				14				13				46				50				48		
d84 (mm)		74				60				45				88				87				111		
Additional Reach Parameters																								
Valley Length (ft)		2,915				2,915				2,915			L	2,915				2,915				2,915		
Channel Length (ft)		3,339				3,339				3,339			L	3,339				3,339				3,339		
Sinuosity		1.3		-		1.3				1.3			L	1.3				1.3				1.3		
Water Surface Slope (ft/ft)		0.014		-		0.01			I	0.01			<u> </u>	0.01				0.01				0.01		
BF Slope (ft/ft)		0.016 E/C4		-		0.01 E/C4				0.01 E/C4			L	0.01				0.01				0.01 E/C4		
Rosgen Classification * Beltwidth was remeasured and			od to ind	ioata th			onto			E/U4				E/C4				E/C4				E/04		
Denwiden was remeasured and	nas pee	in change		เปลเษ เก	e new m	casuleille	51115.																	

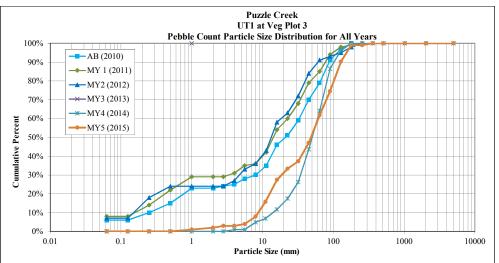

								UT2				
			Cross S	ection 1								
Parameter			Po	ool								
	AB	MY1	MY2	MY3	MY4	MY5						
Dimension												
BF Width (ft)	3.8	4.4	3.3	3.4		3.60						
Floodprone Width (ft)	8.1	7.6	6.5	6.6		6.20						
BF Cross Sectional Area (ft2)	2.4	2.4	1.7	1.4		1.70						
BF Mean Depth (ft)	0.63	0.54	0.50	0.43		0.47						
BF Max Depth (ft)	1.13	0.92	0.80	0.71		0.66						
Width/Depth Ratio	6.0	8.0	6.7	8.0		7.61						
Entrenchment Ratio	2.2	1.7	1.9	1.9		1.70						
Wetted Perimeter (ft)	5.0	5.5	4.3	4.3		4.5						
Hydraulic Radius (ft)	0.5	0.4	0.4	0.3		0.4						
Substrate												
d50 (mm)												
d84 (mm)												
Bananatan	ŀ	AB (2010)		N	IY-1 (2011)	MY-2 (2012)	MY-3 (2013)	MY-4 (2014)		MY-5 (2015)
Parameter	Min M	a x	Med		Min	Max	Med	Min Max Med	Min Max Med	Min Max Med		Min Max Med
Pattern								· · ·			1	
Channel Beltwidth (ft)												
Radius of Curvature (ft)												
Meander Wavelength (ft)												
Meander Width Ratio												
Profile												
Riffle length (ft)												
Riffle Slope (ft/ft)												
Pool Length (ft)												
Pool Spacing (ft)												
Substrate												
d50 (mm)												
d84 (mm)												
Additional Reach Parameters												
Valley Length (ft)		41				41		41	41	41		41
Channel Length (ft)		52				52		52	52	52		52
Sinuosity		1.3				1.3		1.3	1.3	1.3		1.3
Water Surface Slope (ft/ft)		0.016				0.019		0.021	0.021	0.021		0.021
BF Slope (ft/ft)		0.016				0.012		0.010	0.010	0.010		0.010
Rosgen Classification		Е				E		E	E	E		E

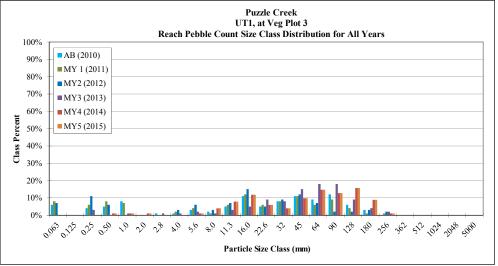

Cross-Section Pebble Count (UT1); YR5 Monitoring Report Puzzle Creek Mitigation Project, DMS#92522

SITE OR PROJECT:	Puzzle Creek
REACH/LOCATION:	UT1-riffle in front of Veg Plot 3
FEATURE:	Riffle

				YR5 2015		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125			0%	0.125
	Fine	.12525			0%	0.25
Sand	Medium	.2550	1	1%	1%	0.50
	Coarse	.50 - 1.0	1	1%	2%	1.0
	Very Coarse	1.0 - 2.0	1	1%	3%	2.0
	Very Fine	2.0 - 2.8			3%	2.8
	Very Fine	2.8 - 4.0			3%	4.0
	Fine	4.0 - 5.6	1	1%	4%	5.6
	Fine	5.6 - 8.0	4	4%	8%	8.0
Crossel	Medium	8.0 - 11.0	8	8%	16%	11.0
Gravel Medium		11.0 - 16.0	12	12%	27%	16.0
	Coarse	16 - 22.6	6	6%	33%	22.6
	Coarse	22.6 - 32	4	4%	37%	32
	Very Coarse	32 - 45	10	10%	47%	45
	Very Coarse	45 - 64	15	15%	62%	64
	Small	64 - 90	13	13%	75%	90
Cobble	Small	90 - 128	16	16%	90%	128
Cobble	Large	128 - 180	9	9%	99%	180
	Large	180 - 256	1	1%	100%	256
	Small	256 - 362			100%	362
Boulder	Small	362 - 512			100%	512
boulder'	Medium	512 - 1024			100%	1024
	Large-Very Large	1024 - 2048			100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % o	of whole count		102	100%		

Summary Data												
Channel materials												
D16 =	11.1	D84 =	111.4									
D35 =	26.2	D95 =	154.1									
D50 =	48.3	D100 =	180 - 256									




Cross-Section Pebble Count (UT1); Monitoring All YRS Puzzle Creek Mitigation Project, DMS# 92522

SITE OR PROJECT:	Puzzle Creek
REACH/LOCATION:	Riffle in front of Veg Plot 3
FEATURE:	Riffle

				2014		Distribution
MATERIAL	PARTICLE	SIZE (mm)	Total	Class %	% Cum	Plot Size (mm)
Silt/Clay	Silt / Clay	< .063			0%	0.063
	Very Fine	.063125			0%	0.125
	Fine	.12525			0%	0.25
Sand	Medium	.2550	1	1%	0%	0.50
	Coarse	.50 - 1.0	1	1%	1%	1.0
	Very Coarse	1.0 - 2.0	1	1%	2%	2.0
	Very Fine	2.0 - 2.8			3%	2.8
	Very Fine	2.8 - 4.0			3%	4.0
	Fine	4.0 - 5.6	1	1%	4%	5.6
	Fine	5.6 - 8.0	4	4%	8%	8.0
Gravel	Medium	8.0 - 11.0	8	8%	16%	11.0
Gravei	Medium	11.0 - 16.0	12	12%	27%	16.0
	Coarse	16 - 22.6	6	6%	33%	22.6
	Coarse	22.6 - 32	4	4%	37%	32
	Very Coarse	32 - 45	10	10%	47%	45
	Very Coarse	45 - 64	15	15%	62%	64
	Small	64 - 90	13	13%	75%	90
Cobble	Small	90 - 128	16	16%	90%	128
Cobble	Large	128 - 180	9	9%	99%	180
	Large	180 - 256	1	1%	99%	256
	Small	256 - 362			100%	362
Boulder	Small	362 - 512			100%	512
Boulder	Medium	512 - 1024			100%	1024
	Large-Very Large	1024 - 2048			100%	2048
Bedrock	Bedrock	> 2048			100%	5000
Total % o	of whole count		102	100%		

Summary Data YR5												
Channel materials												
D16 =	11.1	D84 =	111.4									
D35 =	26.2	D95 =	154.1									
D50 =	48.3	D100 =	180 - 256									

Puzzle Creek Mitigation Project Puzzle Creek Photo Log - Photo Points

Notes:

- 1. Photo point locations are shown on the plan views in the approximate location of the picture.
- 2. Photos taken October, 2015.

Photo Point 1: facing downstream

Photo Point 1: facing upstream

Photo Point 2: facing downstream

Photo Point 2: facing upstream

Photo Point 3: facing downstream

Photo Point 3: facing upstream

Photo Point 4: facing downstream

Photo Point 4: facing upstream

Photo Point 5: facing downstream

Photo Point 5: facing upstream

Photo Point 6: facing downstream

Photo Point 6: facing upstream

Photo Point 7: facing upstream

Photo Point 7: facing downstream

Puzzle Creek Mitigation Project Photo Log - UT Photo Points

Notes:

- 1. Photo point locations are shown on the plan views in the approximate location of the picture.
- 2. Photos taken October, 2015.

Intentionally Blank

Photo Point 1: UT facing downstream

Photo Point 2: UT facing upstream

Photo Point 2: facing downstream

Photo Point 3: facing upstream

Photo Point 3: facing downstream

Photo Point 4: facing upstream

Photo Point 4: facing downstream

Photo Point 5: facing upstream

Photo Point 5: facing downstream

Photo Point 6: facing upstream

Photo Point 6: facing downstream

Photo Point 7: facing upstream

Photo Point 7: facing downstream

Photo Point 8: facing upstream

Photo Point 8: facing downstream

Photo Point 9: facing upstream

Photo Point 9: facing downstream

Photo Point 10: facing upstream

Photo Point 10: facing downstream

Photo Point 11: facing upstream

Photo Point 11: facing downstream

Photo Point 12: facing upstream

Photo Point 12: facing downstream

Photo Point 13: facing upstream

Photo Point 13: facing downstream

Photo Point 14: facing upstream

Intentionally Blank

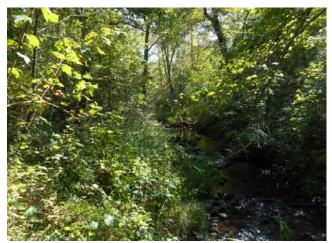


Photo Point 15: facing upstream

Photo Point 15: facing downstream

Photo Point 16: facing upstream

Photo Point 16: facing downstream